【題目】下表是二次函數(shù)y=ax2+bx+c的部分x,y的對應(yīng)值:
x | … | -1 | - | 0 | 1 | 2 | 3 | … | |||
y | … | 2 | -1 | - | -2 | - | -1 | 2 | … |
(1)此二次函數(shù)圖象的頂點坐標(biāo)是 ;
(2)當(dāng)拋物線y=ax2+bx+c的頂點在直線y=x+n的下方時,n的取值范圍是 。
【答案】(1);(2)
【解析】試題分析:
(1)觀察、分析表格中的數(shù)據(jù)可知,當(dāng)x=0和x=2時,y的值都是-1,由此可確定該二次函數(shù)的圖象關(guān)于直線x=1對稱,而當(dāng)x=1時,y=-2,由此可得拋物線的頂點坐標(biāo)為(1,-2);
(2)由拋物線的頂點(1,-2)在直線y=x+n的下方可得,在y=x+n中,當(dāng)x=1時,y>-2,由此可得:1+n>-2,解此不等式即可得到n的取值范圍.
試題解析:
(1)觀察、分析表格中的數(shù)據(jù)可知,當(dāng)x=0和x=2時,y的值都是-1,
∴二次函數(shù)y=ax2+bx+c的對稱軸為直線:x=1,
∵當(dāng)x=1時,y=-2,
∴二次函數(shù)y=ax2+bx+c的頂點坐標(biāo)為(1,-2);
(2)∵拋物線y=ax2+bx+c的頂點(1,-2)在直線y=x+n的下方,
∴在y=x+n中,當(dāng)x=1時,y>-2,由此可得:1+n>-2,解得n>-3,
∴n的取值范圍為:n>-3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上兩點間的距離等于這兩個點所對應(yīng)的數(shù)的差的絕對值.例:點A、B在數(shù)軸上對應(yīng)的數(shù)分別為a、b,則A、B兩點間的距離表示為AB=|a﹣b|.根據(jù)以上知識解題:
(1)點A在數(shù)軸上表示3,點B在數(shù)軸上表示2,那么AB=_______.
(2)在數(shù)軸上表示數(shù)a的點與﹣2的距離是3,那么a=______.
(3)如果數(shù)軸上表示數(shù)a的點位于﹣4和2之間,那么|a+4|+|a﹣2|=______.
(4)對于任何有理數(shù)x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接寫出最小值.如果沒有.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在普通商場中用96元購買了一種商品,后來他在網(wǎng)上發(fā)現(xiàn)完全相同的這一商品在網(wǎng)上購買比普通商場中每件少2元,他用90元在網(wǎng)上再次購買這一商品,比上次在普通商場中多買了3件.問小明在網(wǎng)上購買的這一商品每件幾元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD,點P為邊BC上一動點,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°,點A恰好落在直線CD上點E處
(1) 如圖1,點E在線段CD上,求證:AD+DE=2AB
(2) 如圖2,點E在線段CD的延長線上,且點D 為線段CE的中點,在線段BD上取點F,連接AF、PF,若AF=AB,求證:∠APF=∠ADB
(3) 如圖3,點E在線段CD上,連接BD.若AB=2,BD∥PE,則DE=___________ (直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC,∠BAC=90°,點D,E分別為邊AB,BC的中點,點F在CA延長線上,且∠FDA=∠B.
(1)求證:AF=DE;
(2)若AC=3,BC=5,求四邊形AEDF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是二次函數(shù)y=ax2+bx+c的部分圖象.
(1)結(jié)合圖象信息,求此二次函數(shù)的表達(dá)式;
(2)當(dāng)y>0時,直接寫出x的取值范圍: 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】青島交運集團(tuán)出租車司機(jī)張師傅某天下午的營運全是在東西走向的吉林路上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車?yán)锍?/span>單位:千米如下:,,,,,,,,,,
(1)張師傅這天最后到達(dá)目的地時,在下午出車時的出發(fā)地哪個方向?距離出發(fā)地多遠(yuǎn)?
(2)張師傅這天下午共行車多少千米?
(3)若每千米耗油,則這天下午張師傅用了多少升油?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中點A的坐標(biāo)為(0,6),點B的坐標(biāo)為(﹣,5),將△AOB沿x軸向左平移得到△A′O′B′,點A的對應(yīng)點A′落在直線y=﹣x上,則點B的對應(yīng)點B′的坐標(biāo)為( )
A.(﹣8,6)B.(﹣,5)C.(﹣,5)D.(﹣8,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(﹣1,0)及點B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com