【題目】已知二次函數(shù)yax2+bx+ca0)的圖象如圖所示,則下列結(jié)論:abc0②2a+b0;b24ac0; ④9a+3b+c0.其中正確的結(jié)論有____________( 填序號。

【答案】①②

【解析】

根據(jù)函數(shù)的圖象得出圖象的開口向下,與y軸的交點(diǎn)在y軸的正半軸上,對稱軸是直線x1,拋物線的圖象和x軸有兩個交點(diǎn),函數(shù)與x軸的交點(diǎn)坐標(biāo)是(1,0)和(3,0),再逐個判斷即可.

∵圖象的開口向下,與y軸的交點(diǎn)在y軸的正半軸上,對稱軸是直線x1,

a0,c0,1

2ab0,b0,

abc0,故①②正確;

∵拋物線的圖象和x軸有兩個交點(diǎn),

b24ac0,故③錯誤;

∵拋物線的圖象的對稱軸是直線x1,和x軸的一個交點(diǎn)坐標(biāo)是(10),

∴另一個交點(diǎn)坐標(biāo)是(30),

即當(dāng)x3時,ya×32b×3c0,故④錯誤;

故填:①②.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯誤的是【 】

A.某種彩票的中獎率為1%,買100張彩票一定有1張中獎

B.從裝有10個紅球的袋子中,摸出1個白球是不可能事件

C.為了解一批日光燈的使用壽命,可采用抽樣調(diào)查的方式

D.?dāng)S一枚普通的正六面體骰子,出現(xiàn)向上一面點(diǎn)數(shù)是2的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD內(nèi)接于⊙OABAC,過點(diǎn)AAEBDCD的延長線于點(diǎn)E

1)求證:AEDE;

2)若∠BCD﹣∠CBD60°,求∠ABD的度數(shù);

3)在(2)的條件下,若BD21,CD9,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的半徑為2,弦,點(diǎn)P為優(yōu)弧AB上一動點(diǎn),,交直線PB于點(diǎn)C,則的最大面積是

A.B.1C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O 為原點(diǎn),點(diǎn) A(4,0),點(diǎn) B(0,3),把△ABO 繞點(diǎn) B 逆時針旋轉(zhuǎn),得△A′BO′,點(diǎn) A、O 旋轉(zhuǎn)后的對應(yīng)點(diǎn)為 A′、O′,記旋轉(zhuǎn)角為ɑ.

(1)如圖 1,若ɑ=90°,求 AA′的長;

(2)如圖 2,若ɑ=120°,求點(diǎn) O′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價之間符合一次函數(shù)關(guān)系,其圖象如圖所示.

yx的函數(shù)關(guān)系式;

物價部門規(guī)定:這種電子產(chǎn)品銷售單價不得超過每件80元,那么,當(dāng)銷售單價x定為每件多少元時,廠家每月獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市面上販?zhǔn)鄣姆罆癞a(chǎn)品標(biāo)有防曬指數(shù),而其對抗紫外線的防護(hù)率算法為:防護(hù)率,其中

請回答下列問題:

1)廠商宣稱開發(fā)出防護(hù)率的產(chǎn)品,請問該產(chǎn)品的應(yīng)標(biāo)示為多少?

2)某防曬產(chǎn)品文宣內(nèi)容如圖所示.

請根據(jù)與防護(hù)率的轉(zhuǎn)換公式,判斷此文宣內(nèi)容是否合理,并詳細(xì)解釋或完整寫出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:河上有一座拋物線形橋洞,已知橋下的水面離橋拱頂部3m時,水面寬AB=6m,建立如圖所示的坐標(biāo)系.

(1)當(dāng)水位上升0.5m時,求水面寬度CD為多少米?(結(jié)果可保留根號)

(2)有一艘游船它的左右兩邊緣最寬處有一個長方體形狀的遮陽棚,此船正對著橋洞在上述河流中航行,若這船寬(最大寬度)2米,從水面到棚頂高度為1.8米.問這艘船能否從橋下洞通過?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,拋物線y=﹣x2x+x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過B、C兩點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒1個單位長度的速度向終點(diǎn)B運(yùn)動,連接CM,將線段MC繞點(diǎn)M順時針旋轉(zhuǎn)90°得到線段MD,連接CD、BD.設(shè)點(diǎn)M運(yùn)動的時間為tt0),請解答下列問題:

1)求點(diǎn)A的坐標(biāo)與直線l的表達(dá)式;

2)①請直接寫出點(diǎn)D的坐標(biāo)(用含t的式子表示),并求點(diǎn)D落在直線l上時t的值;

②求點(diǎn)M運(yùn)動的過程中線段CD長度的最小值.

查看答案和解析>>

同步練習(xí)冊答案