定義:只有一組對(duì)角是直角的四邊形叫做損矩形,連結(jié)它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑.
小題1:如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段        .
小題2:在線段AC上確定一點(diǎn)P,使損矩形的四個(gè)頂點(diǎn)都在以P為圓心的同一圓上(即損矩形的四個(gè)頂點(diǎn)在同一個(gè)圓上),請(qǐng)作出這個(gè)圓,并說明你的理由. 友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.
小題3:如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結(jié)BD,當(dāng)BD平分∠ABC時(shí),判斷四邊形ACEF為何種特殊的四邊形?請(qǐng)說明理由. 若此時(shí)AB=3,BD=,求BC的長.
                                    

小題1:AC;
小題1:作圖如圖;
∵點(diǎn)P為AC中點(diǎn),∴PA=PC=AC.
∵∠ABC=∠ADC=90°,∴BP=DP=AC,∴PA=PB=PC=PD,
∴點(diǎn)A、B、C、D在以P為圓心,AC為半徑的同一個(gè)圓上.  
小題1:∵菱形ACEF,∴∠ADC=90°AE=2AD,EC=2CD,∴四邊形ABCD為損矩形,
∴由⑵可知,點(diǎn)A、B、C、D在同一個(gè)圓上.
∵ AM平分∠BAD,∴∠ABD=∠CBD=45°,∴AD=CD,
∴四邊形ACEF為正方形.
∵點(diǎn)BD平分∠ABC,BD=,∴點(diǎn)D到AB、BC的距離h為4,
=6. ,
,
,∴=6+2BC,
∴BC=5或BC=-3(舍去),∴BC=5.
當(dāng)菱形的一個(gè)角為直角時(shí)就成為正方形,根據(jù)面積之間的關(guān)系可以求得BC=5.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,是⊙的直徑上任意一點(diǎn),過點(diǎn)的垂線,的延長線上一點(diǎn),聯(lián)結(jié)交⊙于點(diǎn),且

小題1:判斷直線與⊙的位置關(guān)系,并證明你的結(jié)論;
小題2:若,,過點(diǎn)A作的平行線交⊙于點(diǎn).求弦的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,如果從半徑為的圓形紙片剪去圓周的一個(gè)扇形,將留下在扇形圍成一個(gè)圓錐(接縫處不重疊),那么這個(gè)圓錐的體積是__◆  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列各命題正確的是 :                              (    )
A.若兩弧相等,則兩弧所對(duì)圓周角相等
B.有一組對(duì)邊平行的四邊形是梯形.
C.垂直于弦的直線必過圓心
D.有一邊上的中線等于這邊一半的三角形是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
小題1:判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論
小題2:若DE的長為2,cosB=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在⊙O中,△ABC是它的內(nèi)接三角形,AD是⊙O的直徑,∠ABC=40°,則∠CAD的度數(shù)為                      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)圓柱的側(cè)面展開圖是相鄰邊長分別為10和16的矩形,則該圓柱的底面圓半徑是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB為⊙O的弦,⊙O的半徑為5,OC⊥AB于點(diǎn)D,交⊙O于點(diǎn)C,且CDl,則弦AB的長是            。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠A是⊙O的圓周角,∠OBC =30°,則∠A的度數(shù)為    

查看答案和解析>>

同步練習(xí)冊(cè)答案