已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,
(1)給出三個結(jié)論:①b2-4ac>0;②c>0;③b>0,其中正確結(jié)論的序號是:

(2)給出三個結(jié)論:①9a+3b+c<0;②2c>3b;③8a+c>0,其中正確結(jié)論的序號是:
②③
②③
分析:(1)由函數(shù)的圖象得出拋物線開口向上,與x軸有兩個交點(diǎn),與y軸交點(diǎn)在負(fù)半軸上,且對稱軸為x=1,進(jìn)而確定出b2-4ac大于0以及c<0,b<0;
(2)根據(jù)圖象與x軸正半軸交點(diǎn)坐標(biāo)在2到3之間,利用圖象得出x=3時,對應(yīng)y的值大于0,則:①9a+3b+c<0錯誤;再利用對稱軸得出a,b關(guān)系進(jìn)而由函數(shù)的圖象知:當(dāng)x=-2時,y>0;即4a-(-4a)+c=8a+c>0得出答案即可.
解答:解:(1)由函數(shù)圖象可得:拋物線開口向上,與y軸交點(diǎn)在y軸負(fù)半軸,拋物線與x軸有兩個交點(diǎn),
∴a>0,c<0,b2-4ac>0,故選項①正確,②錯誤;
∵圖象對稱軸為直線x=1>0,
∴a,b異號,
∴b<0,故③錯誤,
故答案為:①;

(2)①∵圖象對稱軸為直線x=1,且圖象與x軸負(fù)半軸交點(diǎn)坐標(biāo)在-1到-2之間,
∴圖象與x軸正半軸交點(diǎn)坐標(biāo)在3到4之間,
利用圖象得出x=3時,對應(yīng)y的值小于0,則:①9a+3b+c<0正確;
當(dāng)x=3時函數(shù)值小于0,y=9a+3b+c<0,且x=-
b
2a
=1,
即a=-
b
2
,代入得9(-
b
2
)+3b+c>0,
得2c>3b,故②正確;
③∵對稱軸x=-
b
2a
=1,
∴b=-2a,
可將拋物線的解析式化為:y=ax2-2ax+c(a≠0);
由函數(shù)的圖象知:當(dāng)x=-2時,y>0;即4a-(-4a)+c=8a+c>0,故本選項正確;
故答案為:①②③.
點(diǎn)評:此題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,其中a的符號由拋物線的開口方向決定;當(dāng)對稱軸在y軸左側(cè)時,a與b同號;當(dāng)對稱軸在y軸右側(cè)時,a與b異號;c的符號有拋物線與y軸的交點(diǎn)位置決定;根的判別式的符號有拋物線與x軸交點(diǎn)的個數(shù)來決定;此外還要找出圖象上的特殊點(diǎn)對應(yīng)的函數(shù)值的正負(fù)來進(jìn)行判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.

(1)寫出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當(dāng)x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應(yīng)值如下表,寫出方程ax2+bx+c=0的一個正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關(guān)于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當(dāng)x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊答案