【題目】分解因式:a2﹣2ab+b2﹣c2.
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形:正三角形、平行四邊形、矩形、菱形、正方形、等腰梯形、直角梯形、圓,其中既是中心對稱圖形,又是軸對稱圖形的共有( )
A.3個
B.4個
C.5個
D.6個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成以下證明,并在括號內填寫理由.
已知:如圖所示,∠1=∠2,∠A=∠3.
求證:∠ABC+∠4+∠D=180°.
證明:∵∠1=∠2
∴ ∥ ( )
∴∠A=∠4( )
∠ABC+∠BCE=180°( )
即∠ABC+∠ACB+∠4=180°
∵∠A=∠3
∴∠3=
∴ ∥
∴∠ACB=∠D( )
∴∠ABC+∠4+∠D=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在的正半軸上,點B的坐標為(3,4)一次函數(shù)的圖象與邊OC、AB分別交于點D、E,并且滿足OD= BE.點M是線段DE上的一個動點.
(1)求b的值;
(2)連結OM,若三角形ODM的面積與四邊形OAEM的面積之比為1:3,求點M的坐標;
(3)設點N是軸上方平面內的一點,以O、D、M、N為頂點的四邊形是菱形,求點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為x=-1.給出四個結論:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正確結論是( )
A.②④ B.①④ C.②③ D.①③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com