已知,如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(-1,0),B(0,-3),C(3,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若拋物線的頂點(diǎn)為D,求sin∠BOD的值.
(1)由已知得
a-b+c=0
c=-3
9a+3b+c=0
解得
a=1
b=-2
c=-3

所以,拋物線的解析式為y=x2-2x-3.

(2)過D作DE⊥y軸于點(diǎn)E.
拋物線的解析式為y=x2-2x-3=(x-1)2-4,
則物線的頂點(diǎn)坐標(biāo)為(1,-4),則OE=4,DE=1.
在直角△ODE中,根據(jù)勾股定理即可得到:OD=
OE2+DE2
=
42+12
=
17

則sin∠BOD=
DE
OD
=
17
17

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,二次函數(shù)y1=mx2+(m-3)x-3(m>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A的坐標(biāo);
(2)當(dāng)∠ABC=45°時(shí),求m的值;
(3)已知一次函數(shù)y2=kx+b,點(diǎn)P(n,0)是x軸上的一個(gè)動(dòng)點(diǎn),在(2)的條件下,過點(diǎn)P垂直于x軸的直線交這個(gè)一次函數(shù)的圖象于點(diǎn)M,交二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象于N.若只有當(dāng)-2<n<2時(shí),點(diǎn)M位于點(diǎn)N的上方,求這個(gè)一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=-2x+42交x軸與點(diǎn)A,交直線y=x于點(diǎn)B,拋物線y=ax2-2x+c分別交線段AB、OB于點(diǎn)C、D,點(diǎn)C和點(diǎn)D的橫坐標(biāo)分別為16和4,點(diǎn)P在這條拋物線上.
(1)求點(diǎn)C、D的縱坐標(biāo).
(2)求a、c的值.
(3)若Q為線段OB上一點(diǎn),且P、Q兩點(diǎn)的縱坐標(biāo)都為5,求線段PQ的長.
(4)若Q為線段OB或線段AB上的一點(diǎn),PQ⊥x軸,設(shè)P、Q兩點(diǎn)之間的距離為d(d>0),點(diǎn)Q的橫坐標(biāo)為m,直接寫出d隨m的增大而減小時(shí)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,OC=4,AO=2OC,且拋物線對稱軸為直線x=-3.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)己知矩形DEFG的一條邊DE在線段AB上,頂點(diǎn)F、G分別在AC、BC上,設(shè)OD=m,矩形DEFG的面積為S,當(dāng)矩形DEFG的面積S取最大值時(shí),連接DF并延長至點(diǎn)M,使FM=
2
5
DF
,求出此時(shí)點(diǎn)M的坐標(biāo);
(3)若點(diǎn)Q是拋物線上一點(diǎn),且橫坐標(biāo)為-4,點(diǎn)P是y軸上一點(diǎn),是否存在這樣的點(diǎn)P,使得△BPQ是直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A,B兩點(diǎn),A在B的左側(cè),A坐標(biāo)為(-1,0)與y軸交于點(diǎn)C(0,3)△ABC的面積為6.
(1)求拋物線的解析式;
(2)拋物線的對稱軸與直線BC相交于點(diǎn)M,點(diǎn)N為x軸上一點(diǎn),當(dāng)以M,N,B為頂點(diǎn)的三角形與△ABC相似時(shí),請你求出BN的長度;
(3)設(shè)拋物線的頂點(diǎn)為D在線段BC上方的拋物線上是否存在點(diǎn)P使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,拋物線交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3).
(1)求這個(gè)拋物線的解析式;
(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使點(diǎn)P到A、C兩點(diǎn)間的距離之和最。舸嬖,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)如果在x軸上方平行于x軸的一條直線交拋物線于M,N兩點(diǎn),以MN為直徑作圓恰好與x軸相切,求此圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,某同學(xué)在探究二次函數(shù)圖象時(shí),作直線y=m平行于x軸,交二次函數(shù)y=x2的圖象于A、B兩點(diǎn),作AC、BD分別垂直于x軸,發(fā)現(xiàn)四邊形ABCD是正方形.
(1)求m的值及A、B兩點(diǎn)的坐標(biāo);
(2)如圖所示,將拋物線“y=x2”改為“y=x2-2x+2”,直線CD經(jīng)過拋物線的頂點(diǎn)P與x軸平行,其它關(guān)系不變,求m的值及A、B兩點(diǎn)的坐標(biāo).
(3)如圖所示,將圖中的改為“y=ax2+bx+c(a>0),其它關(guān)系不變,請直接寫出m的值及A、B兩點(diǎn)的坐標(biāo)(用含有a、b、c的代數(shù)式表示)
[提示:拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
),對稱軸為x=-
b
2a
].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-x2+2mx-m2-m+3
(1)證明拋物線頂點(diǎn)一定在直線y=-x+3上;
(2)若拋物線與x軸交于M、N兩點(diǎn),當(dāng)OM•ON=3,且OM≠ON時(shí),求拋物線的解析式;
(3)若(2)中所求拋物線頂點(diǎn)為C,與y軸交點(diǎn)在原點(diǎn)上方,拋物線的對稱軸與x軸交于點(diǎn)B,直線y=-x+3與x軸交于點(diǎn)A.點(diǎn)P為拋物線對稱軸上一動(dòng)點(diǎn),過點(diǎn)P作PD⊥AC,垂足D在線段AC上.試問:是否存在點(diǎn)P,使S△PAD=
1
4
S△ABC?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,英華學(xué)校準(zhǔn)備圍成一個(gè)中間隔有一道籬笆的長方形花圃,現(xiàn)有長為24m的籬笆,一面靠墻(墻長為10m),設(shè)花圃寬AB為x(m),面積為S(m2).
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為45m2的花圃,AB的長是多少;
(3)能圍出比45m2更大的花圃嗎?若能,求出最大的面積;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案