如圖,拋物線y=ax2+bx+c與x軸交于點A、B,與y軸交于點C,OC=4,AO=2OC,且拋物線對稱軸為直線x=-3.
(1)求該拋物線的函數(shù)表達式;
(2)己知矩形DEFG的一條邊DE在線段AB上,頂點F、G分別在AC、BC上,設OD=m,矩形DEFG的面積為S,當矩形DEFG的面積S取最大值時,連接DF并延長至點M,使FM=
2
5
DF
,求出此時點M的坐標;
(3)若點Q是拋物線上一點,且橫坐標為-4,點P是y軸上一點,是否存在這樣的點P,使得△BPQ是直角三角形?如果存在,求出點P的坐標;若不存在,請說明理由.
(1)∵OC=4,
∴點C的坐標為(0,4).
∴c=4,則拋物線解析式為y=ax2+bx+4.
∵AO=2OC,則AO=8,
∴點A的坐標為(-8,0).
又∵拋物線對稱軸為直線x=-3,
∴點B的坐標為(2,O).
0=64a-8b+4
0=4a+2b+4
,
解得
a=-
1
4
b=-
3
2

∴該拋物線的函數(shù)表達式為y=-
1
4
x2-
3
2
x+4
.(3分)

(2)∵矩形DEFG中FGED,設FG與y軸交于點H,
∴△CFH△CAO,△CHG△COB.
FH
AO
=
CH
CO
=
HG
OB
,即
FH
8
=
m
2

∴FH=4m,故FG=5m.
設直線BC的解析式為:y=kx+b1,則
4=b1
0=3k+b1
,
解得
k=-2
b1=4

∴直線BC的解析式為y=-2x+4,則點G的坐標為(m,-2m+4)
∴S=FG×GD=5m(-2m+4)=-10(m-1)2+10(5分)
∵0≤m≤2,
∴當m=1時,S最大.此時OD=1,OE=4,∴DE=5.
過M作MM1⊥x軸于M1,則△MM1D△FED,
MM1
FE
=
MD
DF
=
DM1
DE

FM=
2
5
DF
,
MD
DF
=
7
5
.則
MM1
2
=
DM1
5
=
7
5

MM1=
14
5
,DM1=7,則OM1=6.
∴此時點M的坐標為(-6,
14
5
)
.(7分)

(3)存在.理由如下:
∵點Q在拋物線上,且橫坐標為-4,
∴yQ=6,
∴點Q坐標為(-4,6),
設P的坐標為(0,n),在△BPQ中,
若∠BQP為直角,則PQ2+BQ2=BP2,
∴42+(n-6)2+62+(2+4)2=22+n2,
解得n=10,
此時點P的坐標為(0,10).(8分)
若∠QBP為直角,則PQ2=BQ2+BP2,
∴42+(6-n)2=62+(2+4)2+22+n2,
解得n=-2,
此時點P的坐標為(0,-2).(9分)
若∠QPB為直角,則BQ2=BP2+PQ2,
∴62+(2+4)2=42+(n-6)2+22+n2
解得n1=3+
17
,n2=3-
17

此時點P的坐標為(0,3+
17
)
(0,3-
17
)
.(11分)
綜上所述,存在這樣的點P,使得以△BPQ是直角三角形,所求的點P的坐標為:
(O,10)或(0,-2)或(0,3+
17
)
(0,3-
17
)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,對稱軸為x=3的拋物線y=ax2+2x與x軸相交于點B,O.
(1)求拋物線的解析式,并求出頂點A的坐標;
(2)連接AB,把AB所在的直線平移,使它經(jīng)過原點O,得到直線l.點P是l上一動點.設以點A、B、O、P為頂點的四邊形面積為S,點P的橫坐標為t,當0<S≤18時,求t的取值范圍;
(3)在(2)的條件下,當t取最大值時,拋物線上是否存在點Q,使△OPQ為直角三角形且OP為直角邊?若存在,直接寫出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線C經(jīng)過原點,對稱軸x=-3與拋物線相交于第三象限的點M,與x軸相交于點N,且tan∠MON=3.
(1)求拋物線C的解析式;
(2)將拋物線C繞原點O旋轉(zhuǎn)180°得到拋物線C′,拋物線C′與x軸的另一交點為A,B為拋物線C′上橫坐標為2的點.
①若P為線段AB上一動點,PD⊥y軸于點D,求△APD面積的最大值;
②過線段OA上的兩點E,F(xiàn)分別作x軸的垂線,交折線O-B-A于點E1,F(xiàn)1,再分別以線段EE1,F(xiàn)F1為邊作如圖2所示的等邊△EE1E2,等邊△FF1F2.點E以每秒1個單位長度的速度從點O向點A運動,點F以每秒1個單位長度的速度從點A向點O運動.當△EE1E2與△FF1F2的某一邊在同一直線上時,求時間t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,如圖,拋物線y=ax2+bx+c經(jīng)過點A(-1,0),B(0,-3),C(3,0)三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知ABCD在平面直角坐標系中的位置如圖所示,拋物線y=ax2+bx-5經(jīng)過A、B、C三點且交CD于F,線段AD所在直線的函數(shù)解析式為y=-3x+3.
①求點A、D的坐標;
②若ABCD的面積為12,求拋物線的函數(shù)解析式;
③在②的條件下,請問拋物線上是否存在點P,使得以CD、CP為鄰邊的平行四邊形的面積是ABCD面積的
1
6
?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,A(-1,0),B(3,0).
(1)若拋物線過A,B兩點,且與y軸交于點(0,-3),求此拋物線的頂點坐標;
(2)如圖,小敏發(fā)現(xiàn)所有過A,B兩點的拋物線如果與y軸負半軸交于點C,M為拋物線的頂點,那么△ACM與△ACB的面積比不變,請你求出這個比值;
(3)若對稱軸是AB的中垂線l的拋物線與x軸交于點E,F(xiàn),與y軸交于點C,過C作CPx軸交l于點P,M為此拋物線的頂點.若四邊形PEMF是有一個內(nèi)角為60°的菱形,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:以原點O為圓心、5為半徑的半圓與y軸交于A、G兩點,AB與半圓相切于點A,點B的坐標為(3,yB)(如圖1);過半圓上的點C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于
3
8
xC2
(1)求點C的坐標;
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NPMQ,PQP1Q1,且NP>MQ.設拋物線y=a0x2+h0過點P、Q,拋物線y=a1x2+h1過點P1、Q1,則h0>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進行驗證;
②當圖1中的線段BC在第一象限時,作線段BC關于y軸對稱的線段FE,連接BF、CE,點T是線段BF上的動點(如圖3);設K是過T、B、C三點的拋物線y=ax2+bx+c的頂點,求K的縱坐標yK的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,關于x的二次函數(shù)y=x2-2mx-m-2的圖象與x軸交于A(x1,0)、B(x2,0)兩點(x1<0<x2),與y軸交于C點
(1)當m為何值時,AC=BC;
(2)當∠BAC=∠BCO時,求這個二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,AB=2,E是AD邊上一點(點E與點A,D不重合).BE的垂直平分線交AB于M,交DC于N.
(1)設AE=x,四邊形ADNM的面積為S,寫出S關于x的函數(shù)關系式;
(2)當AE為何值時,四邊形ADNM的面積最大?最大值是多少?

查看答案和解析>>

同步練習冊答案