精英家教網(wǎng)如圖,在正方形ABCD,F(xiàn)為DC的中點(diǎn),E為BC上一點(diǎn),且EC=
14
BC.
(1)求證:AF⊥EF;
(2)若△AEF的面積為5,求正方形ABCD的邊長(zhǎng).
分析:(1)可利用勾股定理求解,兩直角邊的平方和等于斜邊的平方.
(2)邊長(zhǎng)的計(jì)算,有△AEF的面積,以及三角形的邊與正方形的關(guān)系,運(yùn)用勾股定理可求出邊長(zhǎng).
解答:證明:(1):∵四邊形ABCD是正方形,
∴∠C=∠D=90°,
∵F是CD中點(diǎn),
∴DF=CF=
1
2
CD=
1
2
AD,
∵CE=
1
4
BC=
1
4
CD,
∴CE:DF=CF:AD=1:2,
∴Rt△CEF∽R(shí)t△DFA,
∴∠FAD=∠EFC,
∵∠DAF+∠DFA=90°,
∴∠EFC+∠DFA=90°,
∴∠EFA=180°-90°=90°.
∴AF⊥EF;

(2)設(shè)CE=x,則DF=CF=2x,AD=4x,
S△AEF=
1
2
 ×2 
5
x× 
5
x
=5,
解之得,x=1
所以正方形的邊長(zhǎng)為4x=4.
點(diǎn)評(píng):熟練掌握正方形的性質(zhì),能夠運(yùn)用性質(zhì)解決一些簡(jiǎn)單的計(jì)算問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個(gè)三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線精英家教網(wǎng),交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度;
(3)若以點(diǎn)O,D,E,C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點(diǎn)E是邊AC的中點(diǎn),連接DE,DE的延長(zhǎng)線與邊BC相交于點(diǎn)F,AG∥BC,交DE于點(diǎn)G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長(zhǎng)為3+
3

(1)如圖①,正方形EFPN的頂點(diǎn)E、F在邊AB上,頂點(diǎn)N在邊AC上,在正三角形ABC及其內(nèi)部,以點(diǎn)A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長(zhǎng);
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點(diǎn)P、N分別在邊CB、CA上,求這兩個(gè)正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案