【題目】已知二次函數(shù)y=x2+bx+c(b,c為常數(shù)).
(Ⅰ)當(dāng)b=2,c=﹣3時(shí),求二次函數(shù)的最小值;
(Ⅱ)當(dāng)c=5時(shí),若在函數(shù)值y=1的情況下,只有一個(gè)自變量x的值與其對(duì)應(yīng),求此時(shí)二次函數(shù)的解析式;
(Ⅲ)當(dāng)c=5時(shí),在自變量x的值滿足1≤x≤3的情況下,與其對(duì)應(yīng)的函數(shù)值y的最小值為﹣5,求b的值
【答案】(Ⅰ)-4;(Ⅱ)y=x2+4x+5或y=x2﹣4x+5;(Ⅲ)
【解析】
(Ⅰ)利用配方法得到y=(x+1)2﹣4,然后根據(jù)二次函數(shù)的性質(zhì)解決問題;
(Ⅱ)二次函數(shù)解析式為y=x2+bx+5,把問題轉(zhuǎn)化為x2+bx+5=1有兩個(gè)相等的實(shí)數(shù)解,然后根據(jù)判別式的意義確定b的值,從而得到此時(shí)二次函數(shù)的解析式;
(Ⅲ)利用配方法得到y=(x+)2+5﹣,則拋物線的對(duì)稱軸為直線x=﹣,討論:若﹣≤1,根據(jù)二次函數(shù)的性質(zhì)得到x=1時(shí),y=﹣5,把這組對(duì)應(yīng)值代入解析式求得的b不滿足條件;若1<﹣<3,利用二次函數(shù)的性質(zhì)當(dāng)x=﹣時(shí)5﹣=﹣5,求得的b不滿足條件;若﹣≥3,解得b≤﹣6,利用二次函數(shù)的性質(zhì)得到x=3時(shí),y=﹣5,把這組對(duì)應(yīng)值代入解析式可求出b的值.
解:(Ⅰ)當(dāng)b=2,c=﹣3時(shí),二次函數(shù)解析式為y=x2+2x﹣3,
∵y=(x+1)2﹣4,
∴當(dāng)x=﹣1時(shí),y有最小值﹣4;
(Ⅱ)當(dāng)c=5時(shí),二次函數(shù)解析式為y=x2+bx+5,
∵在函數(shù)值y=1的情況下,只有一個(gè)自變量x的值與其對(duì)應(yīng),
∴x2+bx+5=1有兩個(gè)相等的實(shí)數(shù)解,
方程整理為x2+bx+4=0,
∵△=b2﹣4×4=0,解得b=4或﹣4,
∴此時(shí)二次函數(shù)的解析式為y=x2+4x+5或y=x2﹣4x+5;
(Ⅲ)當(dāng)c=5時(shí),二次函數(shù)解析式為y=x2+bx+5,
∵y=(x+)2+5﹣,
∴拋物線的對(duì)稱軸為直線x=﹣,
若﹣≤1,解得b≥﹣2,在1≤x≤3范圍內(nèi)y隨x的增大而增大,則x=1時(shí),y=﹣5,
∴1+b+5=﹣5,解得b=﹣11(舍去);
若1<﹣<3,即﹣6<b<﹣2,在1≤x≤3范圍內(nèi),當(dāng)x=﹣時(shí)y有最小值﹣5,即5﹣=﹣5,解得b=﹣2(舍去)或b=2(舍去);
若﹣≥3,解得b≤﹣6,在1≤x≤3范圍內(nèi)y隨x的增大而減下,則x=3時(shí),y=﹣5,
∴9+3b+5=﹣5,解得b=﹣;
綜上所述,b的值為﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從共享單車、共享汽車等共享出行到共享充電寶、共享雨傘等共享物品,各式各樣的共享經(jīng)濟(jì)模式在各個(gè)領(lǐng)域迅速普及應(yīng)用,越來越多的企業(yè)與個(gè)人成為參與者與受益者,小宇上網(wǎng)查閱了相關(guān)資料,順便收集到四個(gè)共享經(jīng)濟(jì)領(lǐng)域的圖標(biāo),并將其制成編號(hào)為A,B,C,D的四張卡片(除編號(hào)和內(nèi)容外,其余完全相同),將這四張卡片背面朝上,洗勻放好.
(1)從中隨機(jī)抽取一張,求剛好抽到“共享服務(wù)”的概率.
(2)從中隨機(jī)抽取一張(不放回),再?gòu)闹须S機(jī)抽取一張,請(qǐng)用列表或畫樹狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識(shí)”的概率(這四張卡片分別用它們的編號(hào)A,B,C,D表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“圓材埋壁”是我國(guó)古代著名的數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題,“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問鋸幾何?”用現(xiàn)代的數(shù)學(xué)語言表述是:“如圖,CD為⊙O的直徑,弦AB⊥CD垂足為E,CE=1寸,AB=10寸,求直徑CD的長(zhǎng)”,依題意,CD長(zhǎng)為( )
A.12寸 B.13寸 C.24寸 D.26寸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且A(﹣1,0),B(4,0),與y軸交于點(diǎn)C,C點(diǎn)的坐標(biāo)為(0,﹣2),連接BC,以BC為邊,點(diǎn)O為對(duì)稱中心作菱形BDEC.點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)Q,交BD于點(diǎn)M.
(1)求拋物線的解析式.
(2)x軸上是否存在一點(diǎn)P,使三角形PBC為等腰三角形,若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),試探究m為何值時(shí),四邊形CQMD是平行四邊形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線S1與x軸交于點(diǎn)A(﹣3,0),B(1,0),將它向右平移2個(gè)單位得新拋物線S2,點(diǎn)M,N是拋物線S2上兩點(diǎn),且MN∥x軸,交拋物線S1于點(diǎn)C,已知MN=3MC,則點(diǎn)C的橫坐標(biāo)為( )
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)綜合實(shí)踐活動(dòng)中,同學(xué)們測(cè)量了學(xué)校教學(xué)樓的高度.如圖,CD是高為2m的平臺(tái),在D處測(cè)得樓頂B的仰角為45°,從平臺(tái)底部向教學(xué)樓方向前進(jìn)4m到達(dá)E處,測(cè)得樓頂B的仰角為60°.求教學(xué)樓AB的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,給出如下定義:若點(diǎn)P的橫、縱坐標(biāo)均為整數(shù),且到圓心C的距離d≤r,則稱P為⊙C 的關(guān)聯(lián)整點(diǎn).
(1)當(dāng)⊙O的半徑r=2時(shí),在點(diǎn)D(2,-2),E(-1,0),F(0,2)中,為⊙O的關(guān)聯(lián)整點(diǎn)的是 ;
(2)若直線上存在⊙O的關(guān)聯(lián)整點(diǎn),且不超過7個(gè),求r的取值范圍;
(3)⊙C的圓心在x軸上,半徑為2,若直線上存在⊙C的關(guān)聯(lián)整點(diǎn),求圓心C的橫坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板按如圖放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜邊AC=BD=10,若將三角板DEB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)45°得到△D′E′B,則點(diǎn)A在△D′E′B的( )
A.內(nèi)部 B.外部 C.邊上 D.以上都有可能
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com