【題目】我國邊防局接到情報(bào),近海處有一可疑船只正向公海方向行駛,邊防部迅速派出快艇追趕(如圖1) .圖2中分別表示兩船相對于海岸的距離 (海里)與追趕時(shí)間(分)之間的關(guān)系.根據(jù)圖象問答問題:
(1)①直線與直線中 表示到海岸的距離與追趕時(shí)間之間的關(guān)系;
②與比較 速度快;
③如果一直追下去,那么________ (填 “能”或“不能")追上;
④可疑船只速度是 海里/分,快艇的速度是 海里/分;
(2)與對應(yīng)的兩個(gè)一次函數(shù)表達(dá)式與中的實(shí)際意義各是什么?并直接寫出兩個(gè)具體表達(dá)式.
(3)分鐘內(nèi)能否追上?為什么?
(4)當(dāng)逃離海岸海里的公海時(shí),將無法對其進(jìn)行檢查,照此速度,能否在逃入公海前將其攔截?為什么?
【答案】(1)①;②;③能;④0.2,0.5.(2)兩直線函數(shù)表達(dá)式中的表示的是兩船的速度. A船:,B船:.(3)15分鐘內(nèi)不能追上.(4)能在逃入公海前將其攔截.
【解析】
(1)①根據(jù)圖象的意義, 是從海岸出發(fā), 表示到海岸的距離與追趕時(shí)間之間的關(guān)系;②觀察兩直線的斜率, B船速度更快; ③B船可以追上A船; ④根據(jù)圖象求出兩直線斜率,即為兩船的速度.
(2)兩直線函數(shù)表達(dá)式中的表示的是兩船的速度.
(3)求出兩直線的函數(shù)表達(dá)式,令時(shí)間,代入兩表達(dá)式,若,則表示能追上,否則表示不能追上.
(4)聯(lián)立兩函數(shù)表達(dá)式,解出B船追上A船時(shí)的時(shí)間與位置,與12海里比較,若該位置小于12海里,則表示能在逃入公海前將其攔截.
解: (1)①直線與直線中, 表示到海岸的距離與追趕時(shí)間之間的關(guān)系;
②與比較, 速度快;
③B船速度更快,可以追上A船;
④B船速度海里/分;
A船速度海里/分.
(2)由圖象可得,將點(diǎn)代入,
可得,解得,表示B船的速度為每分鐘0.5海里,
所以:.
將點(diǎn),代入,
可得,
解得,
所以:,
表示A船速度為每分鐘0.2海里.
(3)當(dāng)時(shí),
,
,
,所以15分鐘內(nèi)不能追上.
(4)聯(lián)立兩表達(dá)式,
,
解得,
此時(shí),
所以能在逃入公海前將其攔截.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十字相乘法”能把二次三項(xiàng)式分解因式,對于形如ax2+bxy+cy2的關(guān)于x,y的二次三項(xiàng)式來說,方法的關(guān)鍵是把x2項(xiàng)系數(shù)a分解成兩個(gè)因數(shù)a1,a2的積,即a=a1a2,把y2項(xiàng)系數(shù)c分解成兩個(gè)因數(shù)c1,c2的積,即c=c1c2,并使a1c2+a2c1正好等于xy項(xiàng)的系數(shù)b,那么可以直接寫成結(jié)果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).
例:分解因式:x2﹣2xy﹣8y2.
解:如圖1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).
∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)
而對于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法來分解,如圖2,將a分解成mn乘積作為一列,c分解成pq乘積作為第二列,f分解成jk乘積作為第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都滿足十字相乘規(guī)則,則原式=(mx+py+j)(nx+qy+k);
例:分解因式:x2+2xy﹣3y2+3x+y+2
解:如圖3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;
而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;
∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)
請同學(xué)們通過閱讀上述材料,完成下列問題:
(1)分解因式:
①6x2﹣17xy+12y2=
②2x2﹣xy﹣6y2+2x+17y﹣12=
③x2﹣xy﹣6y2+2x﹣6y=
(2)若關(guān)于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成兩個(gè)一次因式的積,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們學(xué)過的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多項(xiàng)式只用上述方法就無法分解,如,我們細(xì)心觀察這個(gè)式子就會(huì)發(fā)現(xiàn),前兩項(xiàng)符合平方差公式,后兩項(xiàng)可提取公因式,前后兩部分分別分解因式后會(huì)產(chǎn)生公因式,然后提取公因式就可以完成整個(gè)式子的分解因式了.過程為: ;這種分解因式的方法叫分組分解法.利用這種方法解決下列問題:
(1)分解因式:
(2)三邊,,滿足,判斷的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的安全意識(shí)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成“淡薄”、“一般”、“較強(qiáng)”、 “很強(qiáng)”四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖:
根據(jù)以上信息,解答下列問題:
(1)該校有名學(xué)生,現(xiàn)要對安全意識(shí)為“淡薄”、“一般"的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有多少名?
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)求出安全意識(shí)為“較強(qiáng)”的學(xué)生所占的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.
(1)直接寫出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):_____;
(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,AB=CD,點(diǎn)E、F在BC上,且BF=CE.
(1)求證:△ABE≌△DCF;
(2)試證明:以A、F、D、E為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M(﹣2,m).
(1)求反比例函數(shù)的解析式;(2)求點(diǎn)B到直線OM的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象與一次函數(shù)y=﹣x+1的圖象的一個(gè)交點(diǎn)為A(﹣1,m).
(1)求這個(gè)反比例函數(shù)的表達(dá)式;
(2)如果一次函數(shù)y=﹣x+1的圖象與x軸交于點(diǎn)B(n,0),請確定當(dāng)x<n時(shí),對應(yīng)的反比例函數(shù)y=的值的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在△DBC的邊DB上,點(diǎn)A在△DBC內(nèi)部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結(jié)論:
①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正確的是( 。
A. ①②③④ B. ②④ C. ①②③ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com