【題目】如圖,AB是半圓O上的直徑,E的中點(diǎn),OE交弦BC于點(diǎn)D,過點(diǎn)C作⊙O的切線交OE的延長線于點(diǎn)F,已知BC=8DE=2

1)求⊙O的半徑;

2)求CF的長.

【答案】(1)⊙O的半徑5;

(2)CF的長為

【解析】試題分析

(1)根據(jù)垂徑定理得ODC是直角三角形,再用勾股定理列方程即可求出圓的半徑;

(2)OCD∽△OFC,由相似三角形的對(duì)應(yīng)邊成比例求出OF的長,在RtOCF中,用勾股定理可求出CF的長.

試題解析:

1)設(shè)⊙O的半徑為x

E點(diǎn)是的中點(diǎn),O點(diǎn)是圓心,∴ODBC,DC==4,

RtODC中,OD=x﹣2,OD2+DC2=OC2

x﹣22+42=x2

x=5,即⊙O的半徑為5

2FC是⊙O的切線,

OCCF

又∵E的中點(diǎn).∴ODBC,OC2=ODOF,即52=3OF

,在RtOCF中,OC2+CF2=OF2

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年元旦期間,某商場(chǎng)打出促銷廣告,如表所示.

優(yōu)惠

條件

一次性購物不超過200

一次性購物超過200元,但不超過500

一次性購物超過500

優(yōu)惠

辦法

沒有優(yōu)惠

全部按九折優(yōu)惠

其中500元仍按九折優(yōu)惠,超過500元部分按八折優(yōu)惠

小欣媽媽兩次購物分別用了134元和490元.

1)小欣媽媽這兩次購物時(shí),所購物品的原價(jià)分別為多少?

2)若小欣媽媽將兩次購買的物品一次全部買清,則她是更節(jié)省還是更浪費(fèi)?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中∠C=90°,AC=BC=2OAB的中點(diǎn),以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點(diǎn)C,則圖中陰影部分的面積為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)C在AOB的一邊OA上,過點(diǎn)C的直線DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度數(shù);

(2)求證:CG平分OCD;

(3)當(dāng)O為多少度時(shí),CD平分OCF,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象經(jīng)過點(diǎn)A10),B2,0),C0,﹣2),直線x=mm2)與x軸交于點(diǎn)D

1)求二次函數(shù)的解析式;

2)在直線x=mm2)上有一點(diǎn)E(點(diǎn)E在第四象限),使得E、D、B為頂點(diǎn)的三角形與以A、O、C為頂點(diǎn)的三角形相似,求E點(diǎn)坐標(biāo)(用含m的代數(shù)式表示);

3)在(2)成立的條件下,拋物線上是否存在一點(diǎn)F,使得四邊形ABEF為平行四邊形?若存在,請(qǐng)求出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等邊三角形ABC放置在平面直角坐標(biāo)系中,已知A0,0)、B60),反比例函數(shù)的圖象經(jīng)過點(diǎn)C

1)求點(diǎn)C的坐標(biāo)及反比例函數(shù)的解析式.

2)將等邊ABC向上平移n個(gè)單位,使點(diǎn)B恰好落在雙曲線上,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:已知點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為|AB|,當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|a﹣b|,當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí).

(1)如圖2,點(diǎn)A、B都在原點(diǎn)的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|

(2)如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|

(3)如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|

綜上,數(shù)軸上A、B兩點(diǎn)的距離|AB|=|a﹣b|

回答下列問題:

(1)數(shù)軸上表示25的兩點(diǎn)之間的距離是   ,數(shù)軸上表示﹣2和﹣5的兩點(diǎn)之間的距離是   ,數(shù)軸上表示﹣25的兩點(diǎn)之間的距離是   ;

(2)數(shù)軸上表示x和﹣1的兩點(diǎn)AB之間的距離是   ,如果|AB|=2那么x   

(3)若x表示一個(gè)有理數(shù),則|x﹣1|+|x+3|有最小值嗎?若有,請(qǐng)求出最小值;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一名學(xué)生軍訓(xùn)時(shí)連續(xù)射靶10次,命中環(huán)數(shù)分別為 7,8,6,8,5,9,10,7,6,4.則這名學(xué)生射擊環(huán)數(shù)的方差是(  )

A. 3 B. 2.9 C. 2.8 D. 2.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;

(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案