【題目】某超市銷(xiāo)售一種商品,每件的成本每千克18元,規(guī)定每千克售價(jià)不低于成本,且獲利不得高于100%,經(jīng)市場(chǎng)調(diào)查,每天的銷(xiāo)售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 40 | 39 | 38 | 37 |
銷(xiāo)售量y(千克) | 20 | 22 | 24 | 26 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤(rùn)為W(元),求W與x之間的函數(shù)表達(dá)式(利潤(rùn)=收入﹣成本),并指出售價(jià)為多少元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是多少?
(3)該超市若想每天銷(xiāo)售利潤(rùn)不低于480元,請(qǐng)結(jié)合函數(shù)圖象幫助超市確定產(chǎn)品的銷(xiāo)售單價(jià)范圍?
【答案】(1)y=﹣2x+100; (2當(dāng)售價(jià)為34元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是512;(3)銷(xiāo)期間商場(chǎng)每天不低于480元,銷(xiāo)售單價(jià)不低于30元不高于36元.
【解析】
(1)設(shè)y與x的函數(shù)關(guān)系式為y=kx+b,將x=40,y=20;x=37,y=26分別代入求出k、b,
(2)根據(jù)利潤(rùn)=(售價(jià)-成本)×銷(xiāo)售量列出函數(shù)關(guān)系式,
(3)解方程得到x,然后進(jìn)行討論.
(1)設(shè)y與x的函數(shù)關(guān)系式為y=kx+b,將x=40,y=20;x=37,y=26分別代入得
解得
∴y與x之間的函數(shù)表達(dá)式為:y=﹣2x+100;
(2)由W=(x﹣18)y,
將y=﹣2x+100代入得:W=(x﹣18)(﹣2x+100),
∴W=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,
∴當(dāng)售價(jià)為34元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是512;
(3)根據(jù)題意得﹣2x2+136x﹣1800=480,
解得:x1=38,x2=30,
∵試銷(xiāo)期間單價(jià)不低于成本單價(jià),獲利又不得高于100%,
∴18≤x≤36
x2=38不合題意,應(yīng)舍去,
所以30≤x≤36,W≥480.
答:銷(xiāo)期間商場(chǎng)每天不低于480元,銷(xiāo)售單價(jià)不低于30元不高于36元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫(xiě)出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是函數(shù)上兩點(diǎn),為一動(dòng)點(diǎn),作軸,軸,下列說(shuō)法正確的是( )
①;②;③若,則平分;④若,則
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長(zhǎng)恰與另一塊等腰直角三角板ODC的斜邊OC的長(zhǎng)相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.
(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過(guò)點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;
(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過(guò)A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長(zhǎng),求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點(diǎn)A的坐標(biāo)為(3,3).
設(shè)反比例函數(shù)的解析式為y= (k≠0),
∴3=,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.
(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng).
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P,A重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)動(dòng)點(diǎn)M,N在移動(dòng)的過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若不變,求出線段EF的長(zhǎng)度;若變化,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國(guó)古代算法的扛鼎之作.《九章算術(shù)》中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問(wèn)燕、雀一枚各重幾何?”
譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤.問(wèn)雀、燕毎只各重多少斤?”
設(shè)每只雀重x斤,每只燕重y斤,可列方程組為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)D是BC上任意一點(diǎn),將線段AD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn),得到線段AE,連結(jié)EC.
依題意補(bǔ)全圖形;
求的度數(shù);
若,,將射線DA繞點(diǎn)D順時(shí)針旋轉(zhuǎn)交EC的延長(zhǎng)線于點(diǎn)F,請(qǐng)寫(xiě)出求AF長(zhǎng)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于反比例函數(shù)y=(k≠0),下列所給的四個(gè)結(jié)論中,正確的是( 。
A. 若點(diǎn)(2,4)在其圖象上,則(﹣2,4)也在其圖象上
B. 當(dāng)k>0時(shí),y隨x的增大而減小
C. 過(guò)圖象上任一點(diǎn)P作x軸、y軸的垂線,垂足分別A、B,則矩形OAPB的面積為k
D. 反比例函數(shù)的圖象關(guān)于直線y=x和y=﹣x成軸對(duì)稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點(diǎn)E,F分別是線段BC,AC的中點(diǎn),連結(jié)EF.
(1)線段BE與AF的位置關(guān)系是 ,= .
(2)如圖2,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)如圖3,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),延長(zhǎng)FC交AB于點(diǎn)D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com