【題目】先化簡(jiǎn)÷(-),然后再?gòu)模?/span>2<x≤2的范圍內(nèi)選取一個(gè)合適的x的整數(shù)值代入求值
【答案】4.
【解析】試題分析:先將原分式進(jìn)行化解,化解過程中注意不為0的量,根據(jù)不為0的量結(jié)合x的取值范圍得出合適的x的值,將其代入化簡(jiǎn)后的代數(shù)式中即可得出結(jié)論.
試題解析:原式===.
其中,即x≠﹣1、0、1.
又∵﹣2<x≤2且x為整數(shù),∴x=2.
將x=2代入中得: ==4.
考點(diǎn):分式的化簡(jiǎn)求值.
【題型】解答題
【結(jié)束】
21
【題目】解方程:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)在實(shí)施居民用水管理前,隨機(jī)調(diào)查了部分家庭(單位:戶)去年的月均用水量(單位:t),并將調(diào)查數(shù)據(jù)進(jìn)行整理,繪制出如下不完整的統(tǒng)計(jì)圖表:
請(qǐng)解答以下問題:
(1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;
(2)若該小區(qū)有2000戶家庭,根據(jù)此次隨機(jī)抽查的數(shù)據(jù)估計(jì),該小區(qū)月均用水量不低于20t的家庭有多少戶?
(3)為了鼓勵(lì)節(jié)約用水,要確定一個(gè)月均用水量的標(biāo)準(zhǔn),超出該標(biāo)準(zhǔn)的部分按1.5倍價(jià)格收費(fèi),若要使68%的家庭水費(fèi)支出不受影響,那么,你覺得家庭月均用水量應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E,F(xiàn)分別是邊BC,CD邊上的動(dòng)點(diǎn),且AE=AF,設(shè)△AEF的面積為y,EC的長(zhǎng)為x.
(1)求y與x之間的函數(shù)表達(dá)式,并寫出自變量x的取值范圍.
(2)當(dāng)x取何值時(shí),△AEF的面積最大,最大面積是多少?
(3)在直角坐標(biāo)系中畫出y關(guān)于x的函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)C在∠AOB的一邊OA上,過點(diǎn)C的直線DE∥O B.做∠ACD的平分線CF,過點(diǎn)C畫CF的垂線CG,如圖所示.
(Ⅰ)若∠AOB=40°,求∠ACD及∠ECF的度數(shù);
(Ⅱ)求證:CG平分∠OCD;
(Ⅲ)延長(zhǎng)FC交OB于點(diǎn)H,用直尺和三角板過點(diǎn)O作OR⊥FH,垂足為R,過點(diǎn)O
作FH的平行線交ED于點(diǎn)Q.先補(bǔ)全圖形,再證明∠COR=∠GCO,∠CQO=∠CHO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課中,同學(xué)們準(zhǔn)備了一些等腰直角三角形紙片,從每張紙片中剪出一個(gè)扇形制作圓錐玩具模型.如圖,已知△ABC是腰長(zhǎng)為4的等腰直角三角形.
(1)在等腰直角三角形ABC紙片中,以C為圓心,剪出一個(gè)面積最大的扇形(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)請(qǐng)求出所制作圓錐底面的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的對(duì)角線、相交于點(diǎn),過點(diǎn)作且,連接、,連接交于點(diǎn).
(1)求證:;
(2)若菱形的邊長(zhǎng)為2, .求的長(zhǎng).
【答案】(1)證明見解析(2)
【解析】試題分析:(1)先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對(duì)角線互相垂直求出∠COD=90°,證明OCED是矩形,可得OE=CD即可;
(2)根據(jù)菱形的性質(zhì)得出AC=AB,再根據(jù)勾股定理得出AE的長(zhǎng)度即可.
(1)證明:在菱形ABCD中,OC=AC.
∴DE=OC.
∵DE∥AC,
∴四邊形OCED是平行四邊形.
∵AC⊥BD,
∴平行四邊形OCED是矩形.
∴OE=CD.
(2)在菱形ABCD中,∠ABC=60°,
∴AC=AB=2.
∴在矩形OCED中,
CE=OD=.
在Rt△ACE中,
AE=.
點(diǎn)睛:本題考查了菱形的性質(zhì),矩形的判定與性質(zhì),勾股定理的應(yīng)用,是基礎(chǔ)題,熟記矩形的判定方法與菱形的性質(zhì)是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
25
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B的坐標(biāo)為(n,1).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)結(jié)合圖像寫出不等式的解集;
(3)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=10,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于反比例函數(shù)y= 的圖象,下列說法正確的是( )
A.圖象經(jīng)過點(diǎn)(1,1)
B.兩個(gè)分支分布在第二、四象限
C.兩個(gè)分支關(guān)于x軸成軸對(duì)稱
D.當(dāng)x<0時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,△ABC的頂點(diǎn)和點(diǎn)O均在網(wǎng)格圖的格點(diǎn)上,將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1 .
(1)請(qǐng)畫出△A1B1C1;
(2)以點(diǎn)O為圓心, 為半徑作⊙O,請(qǐng)判斷直線AA1與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com