【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.

(1)求證:四邊形AODE是矩形;

(2)若AB=2,AC=2,求四邊形AODE的周長.

【答案】(1)證明見解析;(2)四邊形AODE的周長=2+2

【解析】試題分析:(1)根據(jù)題意可判斷出四邊形AODE是平行四邊形,再由菱形的性質可得出AC⊥BD,即∠AOD=90°,繼而可判斷出四邊形AODE是矩形;

(2)由菱形的性質和勾股定理求出OB,得出OD,由矩形的性質即可得出答案.

試題解析:(1)∵DE∥AC,AE∥BD,

∴四邊形AODE是平行四邊形,

∵四邊形ABCD是菱形,

∴AC⊥BD,

∴∠AOD=∠AOD=90°,

∴四邊形AODE是矩形;

(2)∵四邊形ABCD為菱形,

∴AO=AC=1,OD=OB,

∵∠AOB=90°,

∴OB== ,

∴OD=

∵四邊形AODE是矩形,

∴DE=OA=1,AE=OD=,

∴四邊形AODE的周長=2+2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】要得到二次函數(shù)y=﹣x2+2x﹣2的圖象,需將y=﹣x2的圖象( 。
A.向左平移2個單位,再向下平移2個單位
B.向右平移2個單位,再向上平移2個單位
C.向左平移1個單位,再向上平移1個單位
D.向右平移1個單位,再向下平移1個單位

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果將拋物線yx2向上平移1個單位,那么所得拋物線對應的函數(shù)關系式是( 。

A.yx2+1B.yx21C.y=(x+12D.y=(x12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是(  )

A. AB=BC時,它是菱形 B. ACBD時,它是菱形

C. 當∠ABC=90°時,它是矩形 D. AC=BD時,它是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某鞋店試銷一種新款女鞋,銷售情況如下表所示:

型號

22

22.5

23

23.5

24

24.5

25

數(shù)量(雙)

3

5

10

15

8

3

2

鞋店經(jīng)理最關心的是哪種型號的鞋銷量最大.對他來說,下列統(tǒng)計量中最重要的是( )

A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC為矩形,點A(0,8),C(6,0).動點P從點B出發(fā),以每秒1個單位長的速度沿射線BC方向勻速運動,設運動時間為t秒.

(1)當t=   s時,以OB、OP為鄰邊的平行四邊形是菱形;

(2)當點P在OB的垂直平分線上時,求t的值;

(3)將△OBP沿直線OP翻折,使點B的對應點D恰好落在x軸上,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個有理數(shù)互為相反數(shù),則它們的和為( 。

A. ﹣1 B. 0 C. 1 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊三角形、平行四邊形、矩形、菱形、正方形、正五邊形中,既是軸對稱圖形,又是中心對稱圖形的有( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】住建部發(fā)布數(shù)據(jù)顯示,全國城市年度節(jié)約用水量約為65億立方米,數(shù)據(jù)“65億”用科學記數(shù)法表示為( 。

A.0.65×102B.65×108C.6.5×109D.0.65×1010

查看答案和解析>>

同步練習冊答案