在5,數(shù)學(xué)公式,數(shù)學(xué)公式,數(shù)學(xué)公式,π,數(shù)學(xué)公式中無理數(shù)的個數(shù)為


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
B
分析:無理數(shù)是指無限不循環(huán)小數(shù),包括:①含π的,②開方開不盡的根式,③一些有規(guī)律的數(shù),根據(jù)以上內(nèi)容判斷即可.
解答:無理數(shù)有,,π,共3個,
故選B.
點評:本題考查了對無理數(shù)定義的理解和運用,注意:無理數(shù)是指無限不循環(huán)小數(shù),包括:①含π的,②開方開不盡的根式,③一些有規(guī)律的數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在邊長為4的正方形ABCD中,點P在AB上從A向B運動,連接DP交AC于點Q.
(1)試證明:無論點P運動到AB上何處時,都有△ADQ≌△ABQ;
(2)當點P在AB上運動到什么位置時,△ADQ的面積是正方形ABCD面積的
16

(3)若點P從點A運動到點B,再繼續(xù)在BC上運動到點C,在整個運動過程中,當點P運動到什么位置時,△ADQ恰為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在邊長為6的正方形ABCD中,點P在AB上從A向B運動,連接DP交AC于點Q,連接BQ.
(1)試證明:無論點P運動到AB上何處時,都有△ADQ≌△ABQ;
(2)當△ADQ的面積與正方形ABCD面積之比為1:6時,求BQ的長度,并直接寫出此時點P在AB上的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

在一節(jié)數(shù)學(xué)實踐活動課上,呂老師手拿著三個正方形硬紙板和幾個不同的圓形的盤子,他向同學(xué)們提出了這樣一個問題:已知手中圓盤的直徑為13cm,手中的三個正方形硬紙板的邊長均為5cm,若將三個正方形紙板不重疊地放在桌面上,能否用這個圓盤將其蓋。繂栴}提出后,同學(xué)們七嘴八舌,經(jīng)過討論,大家得出了一致性的結(jié)論是:本題實際上是求在不同情況下將三個正方形硬紙板無重疊地適當放置,圓盤能蓋住時的最小直徑.然后將各種情形下的直徑值與13cm進行比較,若小于或等于13cm就能蓋住,反之,則不能蓋。畢卫蠋煱淹瑢W(xué)們探索性畫出的四類圖形畫在黑板上,如下圖所示.
精英家教網(wǎng)
(1)通過計算,在①中圓盤剛好能蓋住正方形紙板的最小直徑應(yīng)為
 
cm.(填準確數(shù))
(2)圖②能蓋住三個正方形硬紙板所需的圓盤最小直徑為
 
cm圖③能蓋住三個正方形硬紙板所需的圓盤最小直徑為
 
cm?(結(jié)果填準確數(shù))
(3)按④中的放置,考慮到圖形的軸對稱性,當圓心O落在GH邊上時,此時圓盤的直徑最小.請你寫出該種情況下求圓盤最小直徑的過程.(計算中可能用到的數(shù)據(jù),為了計算方便,本問在計算過程中,根據(jù)實際情況最后的結(jié)果可對個別數(shù)據(jù)取整數(shù))
(4)由(1)(2)(3)的計算可知:A.該圓盤能蓋住三個正方形硬紙板,B.該圓盤不能蓋住三個正方形硬紙板.你的結(jié)論是
 
.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在扇形紙片AOB中,OA=10,∠AOB=36°,OB在桌面內(nèi)的直線l上.現(xiàn)將此扇形沿l按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)過程中無滑動),當OA落在l上時,停止旋轉(zhuǎn).則點O所經(jīng)過的路線長為
12π
12π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四巧板也叫”T字之謎”,是一種類似七巧板的智力玩具,其中有大小不同的直角梯形各一塊,等腰直角三角形一塊,凹五邊形一塊.圖1中所示的是一種特殊的四角板,它每塊的頂點都落在小正方形的格點上.
(1)請你通過平移、翻折、旋轉(zhuǎn)將這四塊拼塊在圖2中無縫隙、不重疊地拼成兩個形狀筆筒的特殊四邊形(長方形、平行四邊形、梯形),要求:拼每個四邊形時,四塊拼塊都用上且各自只能使用一次;
(2)這套特殊的四巧板中,四個拼塊的面積之和為
42
42

查看答案和解析>>

同步練習(xí)冊答案