【題目】如圖,已知在直角坐標(biāo)系中,的頂點(diǎn)都在網(wǎng)絡(luò)格上:

(1)請寫出點(diǎn)的坐標(biāo);

(2)先畫出先向軸正方向平移個單位長度,得到;請寫出點(diǎn)的坐標(biāo).

【答案】(1)(-3,2),(-4,-3),(0,-2) (2)圖見解析;(1,2),(0,-3),(4,-2)

【解析】

1)根據(jù)平面直角坐標(biāo)系和網(wǎng)格圖可得出點(diǎn)的坐標(biāo);

2)把點(diǎn)分別沿軸正方向平移個單位長度,得到,連接三點(diǎn)得到,寫出三頂點(diǎn)坐標(biāo)即可.

1)根據(jù)圖形可知,點(diǎn)A、BC的坐標(biāo)分別為:(-3,2),(-4,-3),(0,-2),

故答案為:(-3,2),(-4,-3),(0,-2);

2)把點(diǎn)分別沿軸正方向平移個單位長度后得到,則三個頂點(diǎn)的坐標(biāo)分別為:(1,2),(0,-3),(4,-2),

故答案為:(1,2),(0-3),(4,-2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC,AD,AB于點(diǎn)E,O,F(xiàn),則圖中全等三角形的對數(shù)是(

A.1對
B.2對
C.3對
D.4對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過A、B、C三點(diǎn)作拋物線.

(1)求點(diǎn)C的坐標(biāo)及拋物線的解析式;
(2)點(diǎn)E是AC延長線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,求點(diǎn)D的坐標(biāo);并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD,若存在,請求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵市民節(jié)約用水,某市水費(fèi)實行階梯式計量水價.每戶每月用水量不超過25噸,收

費(fèi)標(biāo)準(zhǔn)為每噸a元;若每戶每月用水量超過25噸時,其中前25噸還是每噸a元,超出的部

分收費(fèi)標(biāo)準(zhǔn)為每噸b元.下表是小明家一至四月份用水量和繳納水費(fèi)情況.根據(jù)表格提供的數(shù)

據(jù),回答:

月份

用水量(噸)

16

18

30

35

水費(fèi)(元)

32

36

65

80

1a=________b=________;

2)若小明家五月份用水32噸,則應(yīng)繳水費(fèi)   元;

3)若小明家六月份應(yīng)繳水費(fèi)102.5元,則六月份他們家的用水量是多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知在數(shù)軸上有A、 B兩點(diǎn),點(diǎn)A表示的數(shù)是-6,點(diǎn)B表示的數(shù)是9.點(diǎn)P在數(shù)軸上從點(diǎn)A出發(fā),以每秒2個單位的速度沿數(shù)軸正方向運(yùn)動,同時,點(diǎn)Q在數(shù)軸上從點(diǎn)B出發(fā),以每秒3個單位的速度沿數(shù)軸負(fù)方向運(yùn)動,當(dāng)點(diǎn)Q到達(dá)點(diǎn)A時,兩點(diǎn)同時停止運(yùn)動,設(shè)運(yùn)動時間為t秒.

(1) AB=____ ;當(dāng)t=1時,點(diǎn)Q表示的數(shù)是___ ;當(dāng)t=___時,P、Q兩點(diǎn)相遇;

(2)如圖2,若點(diǎn)M為線段AP的中點(diǎn),點(diǎn)N為線段BP中點(diǎn),點(diǎn)P在運(yùn)動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由.若不變,請求出線段MN的長;

(3)如圖3,若點(diǎn)M為線段的AP中點(diǎn),點(diǎn)T為線段BQ中點(diǎn),則點(diǎn)M表示的數(shù)為______;點(diǎn)T表示的數(shù)為______MT=______ (用含t的代數(shù)式填空)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知tan∠EOF=2,點(diǎn)C在射線OF上,OC=12.點(diǎn)M是∠EOF內(nèi)一點(diǎn),MC⊥OF于點(diǎn)C,MC=4.在射線CF上取一點(diǎn)A,連結(jié)AM并延長交射線OE于點(diǎn)B,作BD⊥OF于點(diǎn)D.

(1)當(dāng)AC的長度為多少時,△AMC和△BOD相似;
(2)當(dāng)點(diǎn)M恰好是線段AB中點(diǎn)時,試判斷△AOB的形狀,并說明理由;
(3)連結(jié)BC.當(dāng)SAMC=SBOC時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班在一次班會課上,就遇見路人摔倒后如何處理的主題進(jìn)行討論,并對全班 50 名學(xué)生的處理方式進(jìn)行統(tǒng)計,得出相關(guān)統(tǒng)計表和統(tǒng)計圖.

組別

A

B

C

D

處理方式

迅速離開

馬上救助

視情況而定

只看熱鬧

人數(shù)

m

30

n

5

請根據(jù)表圖所提供的信息回答下列問題:

(1)統(tǒng)計表中的 m= ,n= ;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)若該校有 2000 名學(xué)生,請據(jù)此估計該校學(xué)生采取馬上救助方式的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,∠A30°,AB5,點(diǎn)PAC上的動點(diǎn),連接BP,以BP為邊作等邊△BPQ,連接CQ,則點(diǎn)P在運(yùn)動過程中,線段CQ長度的最小值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°AB=AC,直線m經(jīng)過點(diǎn)ABD直線m, CE直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=ACD、A、E三點(diǎn)都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應(yīng)用:如圖3,D、ED、A、E三點(diǎn)所在直線m上的兩動點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)FBAC平分線上的一點(diǎn),ABFACF均為等邊三角形,連接BDCE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

同步練習(xí)冊答案