已知兩圓的半徑分別為5cm和11cm,兩圓的圓心距為6cm,則兩圓的位置關系為


  1. A.
    相交
  2. B.
    內含
  3. C.
    外切
  4. D.
    內切
D
分析:題目告訴了兩圓的半徑分別為5cm和11cm,可計算出半徑差,與圓心距為6cm相比較后即可得到答案.
解答:設兩圓的半徑分別為R、r,圓心距為d,
∵R-r=11-5=6 (cm),
d=6cm,
∴d=R-r,
∴兩圓的位置關系為內切.
故選D.
點評:本題考查了圓與圓的位置關系;計算出兩圓半徑的和與差,然后與圓心距相比較進行判斷兩圓的位置關系是解答此類問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、已知兩圓的半徑分別為7和4,當圓心距從11縮小到3時兩圓的位置關系的變化是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知兩圓的半徑分別為2cm、5cm,兩圓有且只有三條公切線,則它們的圓心距一定( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、已知兩圓的半徑分別為3和5,圓心距為4,則兩圓公切線的條數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

3、已知兩圓的半徑分別為3和5,圓心距為d若兩圓有公共點,則d的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知兩圓的半徑分別為2、5,而圓心距是一元二次方程x2-10x+21=0的根,則兩圓位置關系為( 。

查看答案和解析>>

同步練習冊答案