若三角形三邊的長為下列各組數(shù),則其中是直角三角形的是(     )

A.6,6,6         B.5,12,13        C.4,5,6         D.5,5,8

 

【答案】

B

【解析】A、三邊長都為6,此三角形為等邊三角形,不合題意;

B、∵52+122=25+144=169,132=169,

∴52+122=132,

則此三角形為直角三角形,符合題意;

C、∵42+52=16+25=41,62=36,

∴42+52≠62,

則此三角形不是直角三角形,不合題意;

D、∵52+52=25+25=50,82=64,

∴52+52≠82

則此三角形不是直角三角形,不合題意,

故選B.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,已知關(guān)于x的方程x2-(c+4)x+4c+8=0.
(1)若a,b是方程的兩根,求證△ABC為直角三角形;
(2)若在(1)的條件下,且25asinA=9c,求此直角三角形三邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AB、BC、AC三邊的長分別為
10
、
5
、
13
,求這個三角形的面積.小華同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需要求△ABC的高,而借用網(wǎng)格就能計算出它的面積,這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
(2)若△DEF三邊的長分別為
13
、2
5
、
29
,請在圖①的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.
(3)利用第(2)小題解題方法完成下題:如圖②,一個六邊形綠化區(qū)ABCDEF被分割成7個部分,其中正方形ABQP,CDRQ,EFPR的面積分別為13,20,29,且△PQR、△BCQ、△DER、△APF的面積相等,求六邊形綠化區(qū)ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中, AB、BC、AC三邊的長分別為、、,求這個三角形的面積.小華同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.這種方法叫做構(gòu)圖法.
【小題1】△ABC的面積為:      
【小題2】若△DEF三邊的長分別為、2、,請在圖2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.

 

 
【小題3】利用第2小題解題方法完成下題:如圖3,一個六邊形的花壇被分割成7個部分,其中正方形PRBA,RQDC,QPFE的面積分別為13、10、17,且△PQR、△BCR、△DEQ、△AFP的面積相等,求六邊形花壇ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年九年級第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

在△ABC中, AB、BC、AC三邊的長分別為、、,求這個三角形的面積.小華同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.這種方法叫做構(gòu)圖法.
【小題1】△ABC的面積為:      
【小題2】若△DEF三邊的長分別為、2、,請在圖2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.

【小題3】利用第2小題解題方法完成下題:如圖3,一個六邊形的花壇被分割成7個部分,其中正方形PRBA,RQDC,QPFE的面積分別為13、10、17,且△PQR、△BCR、△DEQ、△AFP的面積相等,求六邊形花壇ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AB、BC、AC三邊的長分別為 、、, 求這個三角形的面積.小華同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需要求△ABC的高,而借用網(wǎng)格就能計算出它的面積,這種方法叫做構(gòu)圖法.

(1)△ABC的面積為            

(2)若△DEF三邊的長分別為 、、,請在圖①的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.

(3)利用第(2)小題解題方法完成下題:如圖②,一個六邊形綠化區(qū)ABCDEF被分割成7個部分,其中正方形ABQP,CDRQ,EFPR的面積分別為13,20,29,且△PQR、△BCQ、△DER、△APF的面積相等,求六邊形綠化區(qū)ABCDEF的面積.

查看答案和解析>>

同步練習(xí)冊答案