16.若x,y都是有理數(shù),且|4-3x+y|與(3-4x-y)2互為相反數(shù),則x,y的值分別為( 。
A.x=-1,y=2B.x=1,y=-1C.x=0,y=-$\frac{3}{5}$D.x=3,y=1

分析 根據(jù)任何數(shù)的絕對(duì)值和平方都是非負(fù)數(shù),且|4-3x+y|與(3-4x-y)2互為相反數(shù),即可得到一個(gè)關(guān)于x,y的方程組,解方程組即可求得x,y的值.

解答 解:∵|4-3x+y|與(3-4x-y)2互為相反數(shù),
∴$\left\{\begin{array}{l}{4-3x+y=0}\\{3-4x-y=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$.
故選:B.

點(diǎn)評(píng) 本題考查了非負(fù)數(shù)的性質(zhì),正確理解兩個(gè)非負(fù)數(shù)的和是0,因而每個(gè)數(shù)的值都是0,得到關(guān)于x,y的方程組是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,拋物線C:y=mx2+4x+1.
(1)當(dāng)拋物線C經(jīng)過點(diǎn)A(-5,6)時(shí),求拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)當(dāng)直線y=-x+1與直線y=x+3關(guān)于拋物線C的對(duì)稱軸對(duì)稱時(shí),求m的值;
(3)若拋物線C:y=mx2+4x+1(m>0)與x軸的交點(diǎn)的橫坐標(biāo)都在-1和0之間(不包括-1和0),結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在平面直角坐標(biāo)系中,點(diǎn)A在函數(shù)y=$\frac{k}{x}$(x>0)的圖象上,過點(diǎn)A作AC⊥y軸于點(diǎn)C,點(diǎn)B在x軸上,連結(jié)CB、AB.若△ABC的面積為4,則k的值為8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.在平面直角坐標(biāo)系中,矩形OABC如圖所示.點(diǎn)A在x軸正半軸上,點(diǎn)C在y軸正半軸上,且OA=6,OC=4,D為OC中點(diǎn),點(diǎn)E、F在線段OA上,點(diǎn)E在點(diǎn)F左側(cè),EF=2.當(dāng)四邊形BDEF的周長(zhǎng)最小時(shí),點(diǎn)E的坐標(biāo)是( 。
A.($\frac{1}{2}$,0)B.($\frac{4}{3}$,0)C.($\frac{3}{2}$,0)D.(2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.如圖,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=$\frac{m}{x}$的圖象交于A(-2,1)、B(1,n)兩點(diǎn).若y1>y2,則x的取值范圍是x<-2或0<x<1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=$\frac{k}{x}$(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求k的值;
(2)在y軸上是否存在點(diǎn)P,使以點(diǎn)P、A、H、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫出P點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.
(3)點(diǎn)N(a,1)是反比例函數(shù)y=$\frac{k}{x}$(x>0)圖象上的點(diǎn),在x軸上有一點(diǎn)P,使得PM+PN最小,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.已知A(2,-2),B(-1,4)是一次函數(shù)y2=-2x+2的圖象與反比例函數(shù)y=$\frac{m}{x}$的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)反比例函數(shù)關(guān)系式為y=-$\frac{4}{x}$;
(2)直接寫出方程kx+b=$\frac{m}{x}$的解;
(3)觀察圖象,寫出當(dāng)x為何值時(shí),y1<y2
(4)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在?ABCD中,E、F分別為AB、BC的中點(diǎn),連接EC、AF,AF與EC交于點(diǎn)M,AF的延長(zhǎng)線與DC的延長(zhǎng)線交于點(diǎn)N.
(1)求證:AB=CN;
(2)若△AEM的面積為2,求?ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.已知一次函數(shù)y=-$\frac{1}{2}$x+3,求在這個(gè)函數(shù)的圖象上且位于x軸上方的所有點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案