如圖所示,矩形ABCD的面積為10cm2,它的兩條對(duì)角線交于點(diǎn)O,以AB、AO1為鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對(duì)角線交于點(diǎn)O2,同樣以AB、AO2為鄰邊作平行四邊形ABC2O2,…,依此類(lèi)推,則平行四邊形ABC3O3的面積為( 。
分析:因?yàn)榫匦蔚膶?duì)邊和平行四邊形的對(duì)邊互相平行,且矩形的對(duì)角線和平行四邊形的對(duì)角線都互相平分,所以上下兩平行線間的距離相等,平行四邊形的面積等于底×高,所以第一個(gè)平行四邊形是矩形的一半,第二個(gè)平行四邊形是第一個(gè)平行四邊形的一半依次可推下去.
解答:解:根據(jù)題意分析可得:
∵四邊形ABCD是矩形,
∴O1A=O1C,
∵四邊形ABC101是平行四邊形,
∴O1C1∥AB,
∴BE=
1
2
BC,
∵S矩形ABCD=AB•BC,S?ABC1O1=AB•BE=
1
2
AB•BC,
∴面積為原來(lái)的
1
2

同理:每個(gè)平行四邊形均為上一個(gè)面積的
1
2
,
故平行四邊形ABC3O3的面積為10×(
1
2
5=
5
16
cm2
故選B.
點(diǎn)評(píng):此題綜合考查了矩形及平行四邊形的性質(zhì),要求學(xué)生審清題意,找出面積之間的關(guān)系,這類(lèi)題型在中考中經(jīng)常出現(xiàn),對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在平面直角坐標(biāo)系中,已知△ABC是等邊三角形,點(diǎn)B的坐標(biāo)為(12,0),動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向點(diǎn)B以每秒
3
個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.以點(diǎn)P為頂點(diǎn),作等邊△PMN,點(diǎn)M,N在x軸上.
(1)當(dāng)t為何值時(shí),點(diǎn)M與點(diǎn)O重合;
(2)求點(diǎn)P坐標(biāo)和等邊△PMN的邊長(zhǎng)(用t的代數(shù)式表示);
(3)如果取OB的中點(diǎn)D,以O(shè)D為邊在△AOB內(nèi)部作如圖②所示的矩形ODEF,點(diǎn)E在線段AB上.設(shè)等邊△PMN和矩形ODEF重疊部分的面積為S,請(qǐng)求出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并求出S的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖所示,在△ABC中,分別以AB、AC、BC為邊在BC的同側(cè)作等邊△ABD,等邊△ACE、等邊△BCF.
(1)求證:四邊形DAEF是平行四邊形;
(2)探究下列問(wèn)題:(只填滿足的條件,不需證明)
①當(dāng)△ABC滿足
∠BAC=150°
條件時(shí),四邊形DAEF是矩形;
②當(dāng)△ABC滿足
AB=AC≠BC
條件時(shí),四邊形DAEF是菱形;
③當(dāng)△ABC滿足
∠BAC=60°
條件時(shí),以D、A、E、F為頂點(diǎn)的四邊形不存在.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖①在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿著B(niǎo)C、CD、DA運(yùn)動(dòng)到點(diǎn)A停止,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,如果y與x的函數(shù)圖象如圖②所示,則△ABC的周長(zhǎng)為
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC是等邊三角形,點(diǎn)O為是AC的中點(diǎn),OB=12,動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向點(diǎn)B以每秒
3
個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.以點(diǎn)P為頂點(diǎn),作等邊△PMN,點(diǎn)M,N在直線OB上,取OB的中點(diǎn)D,以O(shè)D為邊在△AOB內(nèi)部作如圖所示的矩形ODEF,點(diǎn)E在線段AB上.
(1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動(dòng)到與點(diǎn)O重合時(shí)t的值;
(2)求等邊△PMN的邊長(zhǎng)(用t的代數(shù)式表示);
(3)設(shè)等邊△PMN和矩形ODE F重疊部分的面積為S,請(qǐng)求你直接寫(xiě)出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并寫(xiě)出對(duì)應(yīng)的自變量t的取值范圍;
(4)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)M,使得△EFM是等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•邵陽(yáng))如圖所示,在△ABC中,AB=AC,∠A<90°,邊BC、CA、AB的中點(diǎn)分別是D、E、F,則四邊形AFDE是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案