(2012•邵陽)如圖所示,在△ABC中,AB=AC,∠A<90°,邊BC、CA、AB的中點分別是D、E、F,則四邊形AFDE是( 。
分析:首先根據(jù)三角形中位線定理證得四邊形AFDE是平行四邊形,然后由等腰三角形的性質(zhì)證得該平行四邊形的鄰邊相等.
解答:解:∵邊BC、CA的中點分別是D、E,
∴線段DE是△ABC的中位線,
∴DE=
1
2
AB,DE∥AC.
同理,DF=
1
2
AC,DF∥AC.
又AB=AC,∠A<90°,
∴DE∥AF,DF∥AE,DE=DF,
∴四邊形AFDE是菱形.
故選A.
點評:本題考查了菱形的判定、等腰三角形的性質(zhì)以及三角形中位線定理.三角形中位線定理:三角形的中位線平行于第三邊且等于第三邊的一半.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•邵陽)如圖所示,在Rt△ABC中,∠ACB=90°,∠B=30°,ED是BC的垂直平分線,請寫出圖中兩條相等的線段是
BD=CD(答案不唯一)
BD=CD(答案不唯一)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•邵陽)如圖所示,圓柱體的俯視圖是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•邵陽)如圖所示,直線AB是⊙O的切線,切點為A,OB=5,AB=4,則OA的長是
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•邵陽)如圖所示,已知拋物線C0的解析式為y=x2-2x
(1)求拋物線C0的頂點坐標;
(2)將拋物線C0每次向右平移2個單位,平移n次,依次得到拋物線C1、C2、C3、…、Cn(n為正整數(shù))
①求拋物線C1與x軸的交點A1、A2的坐標;
②試確定拋物線Cn的解析式.(直接寫出答案,不需要解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•邵陽)如圖所示,直線y=-
34
x+b
與x軸相交于點A(4,0),與y軸相交于點B,將△AOB沿著y軸折疊,使點A落在x軸上,點A的對應(yīng)點為點C.
(1)求點C的坐標;
(2)設(shè)點P為線段CA上的一個動點,點P與點A、C不重合,連接PB,以點P為端點作射線PM交AB于點M,使∠BPM=∠BAC
①求證:△PBC∽△MPA;
②是否存在點P使△PBM為直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案