【題目】如圖1,拋物線經(jīng)過點、兩點,是其頂點,將拋物線繞點旋轉(zhuǎn),得到新的拋物線.
(1)求拋物線的函數(shù)解析式及頂點的坐標(biāo);
(2)如圖2,直線經(jīng)過點,是拋物線上的一點,設(shè)點的橫坐標(biāo)為(),連接并延長,交拋物線于點,交直線l于點,,求的值;
(3)如圖3,在(2)的條件下,連接、,在直線下方的拋物線上是否存在點,使得?若存在,求出點的橫坐標(biāo);若不存在,請說明理由.
【答案】(1),頂點為:;(2)的值為﹣3;(3)存在,點的橫坐標(biāo)為:或.
【解析】
(1)運(yùn)用待定系數(shù)法將、代入中,即可求得和的值和拋物線解析式,再利用配方法將拋物線解析式化為頂點式即可求得頂點的坐標(biāo);
(2)根據(jù)拋物線繞點旋轉(zhuǎn),可求得新拋物線的解析式,再將代入中,即可求得直線解析式,根據(jù)對稱性可得點坐標(biāo),過點作軸交直線于,過作軸交直線于,由,即可得,再證明∽,即可得,建立方程求解即可;
(3)連接,易證是,,可得,在軸下方過點作,在上截取,過點作軸于,連接交拋物線于點,點即為所求的點;通過建立方程組求解即可.
(1)將、代入中,得
解得
∴拋物線解析式為:,
配方,得:,∴頂點為:;
(2)∵拋物線繞點旋轉(zhuǎn),得到新的拋物線.
∴新拋物線的頂點為:,二次項系數(shù)為:
∴新拋物線的解析式為:
將代入中,得,解得,
∴直線解析式為,
∵,
∴直線的解析式為,
由拋物線與拋物線關(guān)于原點對稱,可得點、V關(guān)于原點對稱,
∴
如圖2,過點作軸交直線于,過作軸交直線于,
則,,
∴,,
∵
∴,
∵軸,軸
∴
∴∽
∴,即
∴
解得:,,
∵
∴的值為:﹣3;
(3)由(2)知:,
∴,,,
如圖3,連接,在中,∵,,
∴
∴是直角三角形,,
∴,
∵
∴,
在軸下方過點作,在上截取,
過點作軸于,連接交拋物線于點,點即為所求的點;
∵,
∴
∵
∴
∴,設(shè)直線解析式為,
則,解得
∴直線解析式為,
解方程組,得,,
∴點的橫坐標(biāo)為:或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD上的點,且∠EAF=45°,AE、AF分別交BD于M、N,連按EN、EF、有以下結(jié)論:①AN=EN,②當(dāng)AE=AF時,=2﹣,③BE+DF=EF,④存在點E、F,使得NF>DF,其中正確的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一拋物線的對稱軸為直線,與y軸負(fù)半軸交于C點,與x軸交于A、B兩點,其中B點的坐標(biāo)為(3,0),且OB=OC.
(1)求此拋物線的解析式;
(2)若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當(dāng)點P運(yùn)動到什么位置時,△APG的面積最大?求出此時P點的坐標(biāo)和△APG的最大面積.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(其中點M在點N的右側(cè)),在x軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將矩形紙片ABCD折疊,使得頂點A與邊CD上的動點P重合(點P不與點C、D重合),MN為折痕,點M、N分別在邊BC、AD上,連結(jié)AM、MP、AP,其中,AP與MN相交于點F.⊙O過點M、C、P
(1)若∠AMP=90°,求證:BM=CP;
(2)隨著點P的運(yùn)動,若⊙O與AM相切于點M,又與AD相切于點H,且AB=4,求CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為提倡居民節(jié)約用水,自今年1月1日起調(diào)整居民用水價格.圖中、分別表示去年、今年水費(fèi)(元)與用水量()之間的關(guān)系.小雨家去年用水量為150,若今年用水量與去年相同,水費(fèi)將比去年多_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點,過點D作⊙O的切線交BC于點M,則DM的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,E為BC上一點,以CE為直徑作⊙O,AB與⊙O相交于點D,且∠A=2∠DCB,連接CD.
(1)求證:AB是⊙O的切線;
(2)若BE=OE=2,求圖中陰影部分的面積(結(jié)果保留和根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的對稱軸為直線.若關(guān)于的一元二次方程在的范圍內(nèi)有實數(shù)根,則的取值范圍是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,添加適當(dāng)?shù)臈l件使四邊形成為菱形.下列添加的條件不正確的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com