【題目】如圖,在ABC中,∠ACB90°EBC上一點(diǎn),以CE為直徑作⊙OAB與⊙O相交于點(diǎn)D,且∠A2DCB,連接CD

(1)求證:AB是⊙O的切線;

(2)BEOE2,求圖中陰影部分的面積(結(jié)果保留和根號(hào)).

【答案】1)見(jiàn)解析;(2)陰影部分的面積=2.

【解析】

1)連接OD,由ODOC,可得∠BCD=ODC,∠DOB=BCD +ODC=2BCD,又∠A=2BCD,可知∠DOB=A,由于∠A+B=90°,可得ODAB,即可得出AB是⊙O的切線;

2)根據(jù)勾股定理求出BD,分別求出ODB和扇形DOE的度數(shù),即可得出答案.

1)證明:連接OD

OD=OC,

∴∠BCD=ODC

∴∠DOB=BCD +ODC=2BCD

而∠A=2BCD,

∴∠DOB=A

∵∠A+B=90°,

∴∠DOB+B=90°,

ODAB

AB是⊙O的切線;

2)解:∵∠ACB=90°,BEOE=OA2

cosDOB=,∴∠DOB=60°,

RtDOB中,OD=2

BD=OD=2,

∴陰影部分的面積=SBODS扇形DOE

=×2×2

=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有兩條公路OM,ON相交成30°,沿公路OM方向離兩條公路的交叉處O點(diǎn)80米的A處有一所希望小學(xué),當(dāng)拖拉機(jī)沿ON方向行駛時(shí),距拖拉機(jī)中心50米的范圍內(nèi)均會(huì)受到噪音影響,已知有兩臺(tái)相距40米的拖拉機(jī)正沿ON方向行駛,它們的速度均為10/秒,則這兩臺(tái)拖拉機(jī)沿ON方向行駛時(shí)給小學(xué)帶來(lái)噪音影響的時(shí)間為

A. 6B. 8C. 10D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不正確的是( 。

A.已知線段AB40cm,點(diǎn)P是線段AB的黃金分割點(diǎn),且APBP,則AP的長(zhǎng)約為24.72cm

B.各有一個(gè)角是100°的等腰三角形相似

C.所有的矩形都相似

D.菱形既是軸對(duì)稱圖形,又是中心對(duì)稱圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線經(jīng)過(guò)點(diǎn)、兩點(diǎn),是其頂點(diǎn),將拋物線繞點(diǎn)旋轉(zhuǎn),得到新的拋物線

1)求拋物線的函數(shù)解析式及頂點(diǎn)的坐標(biāo);

2)如圖2,直線經(jīng)過(guò)點(diǎn),是拋物線上的一點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為),連接并延長(zhǎng),交拋物線于點(diǎn),交直線l于點(diǎn),,求的值;

3)如圖3,在(2)的條件下,連接,在直線下方的拋物線上是否存在點(diǎn),使得?若存在,求出點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為1,弦AB=,弦AC=,則∠BAC的度數(shù)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸分別交于、兩點(diǎn),與軸交于點(diǎn),.則由拋物線的特征寫出如下結(jié)論:①;②;③;④.其中正確的個(gè)數(shù)是()

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線軸兩個(gè)交點(diǎn)間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對(duì)稱軸為直線,將此拋物線向下平移3個(gè)單位,得到的拋物線過(guò)點(diǎn)(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,是邊上的一動(dòng)點(diǎn)(不與點(diǎn)重合),連接,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,連接并延長(zhǎng)交于點(diǎn),連接,過(guò)點(diǎn)的延長(zhǎng)線于點(diǎn),連接

1)求證:;

2)用等式表示線段的數(shù)量關(guān)系,并證明.

3)若正方形的邊長(zhǎng)為4,取DH的中點(diǎn)M,請(qǐng)直接寫出線段BM長(zhǎng)的最小值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,C=90°,AC=8,BC=6,點(diǎn)D,E分別在邊AB,AC,將△ADE沿直線DE翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)在邊AB,聯(lián)結(jié)A′C,如果A′C=A′A,那么BD=___.

查看答案和解析>>

同步練習(xí)冊(cè)答案