【題目】利用因式分解說明(1)32004×319910×3198能被7整除.(2)913324必能被8整除.

【答案】1)見解析;(2)見解析.

【解析】

(1)3200-4×3199+10×3198分解因式,得出等于7與一個(gè)數(shù)的乘積的形式,即可說明32000-4×31999+10×31998能被7整除;

(2)首先將原式利用冪的乘方變形,然后利用因式分解將原式進(jìn)一步變形后即可得到結(jié)論.

解:(1)原式=3198×(324×310)3198×7,

32004×319910×3198能被7整除

(2)913324326324324(321)8×324

913324必能被8整除

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校決定對學(xué)生感興趣的球類項(xiàng)目(A:足球,B:籃球,C:排球,D:羽毛球,E:乒乓球)進(jìn)行問卷調(diào)查,學(xué)生可根據(jù)自己的喜好選修一門,李老師對某班全班同學(xué)的選課情況進(jìn)行統(tǒng)計(jì)后,制成了兩幅不完整的統(tǒng)計(jì)圖(如圖).

(1)該班學(xué)生人數(shù)有 人;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校共有學(xué)生3500名,請估計(jì)有多少人選修足球?

(4)該班班委5人中,1人選修籃球,3人選修足球,1人選修排球,李老師要從這5人中任選2人了解他們對體育選修課的看法,請你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修籃球,1人選修足球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項(xiàng)式15m3n2+5m2n﹣20m2n的公因式是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算x2x3 , 正確結(jié)果是(
A.x6
B.x5
C.x9
D.x8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算與化簡:

﹣20﹣(﹣14)+(﹣18)﹣13;

4×(﹣3)2﹣5×(﹣2)3﹣6;

+×60);

141÷3×|332|;

x2+5y﹣4x2﹣3y﹣1;

7a+3(a﹣3b)﹣2(b﹣a).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)E(x0,y0),F(x2,y2),點(diǎn)M(x1,y1)是線段EF的中點(diǎn),則, .在平面直角坐標(biāo)系中有三個(gè)點(diǎn)A(1,-1),B(1,-1),C(0,1),點(diǎn)P(0,2)關(guān)于A的對稱點(diǎn)為P1(P,A,P1三點(diǎn)共線,且PAP1A)P1關(guān)于B的對稱點(diǎn)為P2,P2關(guān)于C的對稱點(diǎn)為P3,按此規(guī)律繼續(xù)以A,B,C為對稱點(diǎn)重復(fù)前面的操作,依次得到P4,P5P6,…,則點(diǎn)P2015的坐標(biāo)是(  )

A. (0,0) B. (02)

C. (2,-4) D. (4,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某大型企業(yè)員工對企業(yè)的滿意程度,以下樣本最具代表性的是(

A. 企業(yè)男員工 B. 企業(yè)年滿50歲及以上的員工

C. 用企業(yè)人員名冊,隨機(jī)抽取三分之一的員工 D. 企業(yè)新進(jìn)員工

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在做作業(yè)時(shí),遇到如下問題:如圖1,已知:等邊△ABC,點(diǎn)D在BC上,以AD為邊作等邊△ADE,連接CE,求證:∠ACE=60°.

(1)請你解答小明的這道題;
(2)在這個(gè)問題中,當(dāng)D在BC上運(yùn)動(dòng)時(shí),點(diǎn)E是否在一條線段上運(yùn)動(dòng)?
(直接答“是”或“不是”)
(3)如圖2,正方形ABCD的邊長為2,E是直線BC上的一個(gè)動(dòng)點(diǎn),以DE為邊作正方形DEFG(DEFG按逆時(shí)針排列)。當(dāng)E在直線BC上運(yùn)動(dòng)時(shí),點(diǎn)G是否在一條直線上運(yùn)動(dòng)?如果是,請你畫出這條直線并證明;如果不是,也請說明理由;
(4)連接AG、CG,①求證:AG2-CE2是定值; ②求AG+CG的最小值(直接寫出答案即可)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AD是△ABC的邊BC上的中線,AB=6,AC=4,則邊BC的取值范圍是 , 中線AD的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案