已知二次函數(shù)y=-x2+2ax-4a+8
(1)求證:無(wú)論a為任何實(shí)數(shù),二次函數(shù)的圖象與x軸總有兩個(gè)交點(diǎn).
(2)當(dāng)x≥2時(shí),函數(shù)值y隨x的增大而減小,求a的取值范圍.
(3)以二次函數(shù)y=-x2+2ax-4a+8圖象的頂點(diǎn)A為一個(gè)頂點(diǎn)作該二次函數(shù)圖象的內(nèi)接正三角形AMN(M,N兩點(diǎn)在二次函數(shù)的圖象上),請(qǐng)問(wèn):△AMN的面積是與a無(wú)關(guān)的定值嗎?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

【答案】分析:(1)利用一元二次方程根的判別式進(jìn)行判斷,若△>0,則-x2+2ax-4a+8=0有兩個(gè)不相等的實(shí)數(shù)根,即
二次函數(shù)的圖象與x軸總有兩個(gè)交點(diǎn),據(jù)此可求出a的取值范圍.
(2)將二次函數(shù)解析式轉(zhuǎn)化為頂點(diǎn)式,找到對(duì)稱(chēng)軸,根據(jù)對(duì)稱(chēng)軸在x=2的左側(cè)或與x=2重合得到a≤2.
(3)解法一:正三角形的面積只與二次函數(shù)圖形的開(kāi)口大小有關(guān),二次函數(shù)y=-x2+2ax-4a+8的圖象可以看做是二次函數(shù)y=-x2的圖象通過(guò)平移得到的,于是研究y=-x2的圖象與正三角形△A'M'N'的面積即可,計(jì)算出M′N(xiāo)′H和A′B′即可計(jì)算三角形的面積為定值;
解法二:根據(jù)拋物線(xiàn)和正三角形的對(duì)稱(chēng)性,可知MN⊥y軸,利用三角函數(shù)求出,設(shè)M(m,n),得到BM=a-m(m<a),AB=yA-yB=a2-4a+8-n,計(jì)算出它們的值,利用三角形面積公式計(jì)算出面積為定值.
解答:解:(1)∵△=4a2-16a+32=4(a-2)2+16,
無(wú)論a為何實(shí)數(shù)△=4(a-2)2+16>0,
∴拋物線(xiàn)與x軸總有兩個(gè)交點(diǎn).

(2)∵y=-x2+2ax-4a+8,
∴y=-(x-a)2+a2-4a+8,
∴由題意得,對(duì)稱(chēng)軸在x=2的左側(cè)或與x=2重合,
故a≤2.

(3)如圖:

解法一:以二次函數(shù)y=-x2+2ax-4a+8圖象的頂點(diǎn)A為一個(gè)頂點(diǎn)作該二次函數(shù)圖象的內(nèi)接正三角形AMN(M,N兩點(diǎn)在二次函數(shù)的圖象上),
這個(gè)正三角形的面積只與二次函數(shù)圖形的開(kāi)口大小有關(guān).
二次函數(shù)y=-x2+2ax-4a+8的圖象可以看做是二次函數(shù)y=-x2的圖象通過(guò)平移得到的.
如圖,正三角形AMN的面積等于正三角形△A'M'N'的面積.
因此,與a的取值無(wú)關(guān),
∵點(diǎn)A',M,'N'在二次函數(shù)y=-x2的圖象上,
∴A'(0,0),M'(-m,-m2),N'(m,-m2),B'(0,-m2),B'N'=m,,
∵點(diǎn)N'在y=-x2的圖象上,
∴A'B'=m2
,
m=0(舍去),
,
,A'B'=3,
,
∴正三角形AMN的面積是與a無(wú)關(guān)的定值,定值為
解法二:根據(jù)拋物線(xiàn)和正三角形的對(duì)稱(chēng)性,可知MN⊥y軸,
設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與MN交于點(diǎn)B,則,
設(shè)M(m,n),
∴BM=a-m(m<a),
又AB=yA-yB=a2-4a+8-n
=(a2-4a+8)-(-m2+2am-4a+8)


,
,AB=3,
,
∴正三角形AMN的面積是與a無(wú)關(guān)的定值.
點(diǎn)評(píng):本題考查了二次函數(shù)與x軸的交點(diǎn)問(wèn)題、根的判別式、對(duì)稱(chēng)軸與不等式、二次函數(shù)的平移、正三角形的性質(zhì)等知識(shí),綜合性強(qiáng),思維含量高,需要同學(xué)們加強(qiáng)練習(xí),方能正確解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象過(guò)點(diǎn)A(1,2),B(3,2),C(0,-1),D(2,3).點(diǎn)P(x1,y1),Q(x2,y2)也在該函數(shù)的圖象上,當(dāng)0<x1<1,2<x2<3時(shí),y1與y2的大小關(guān)系正確的是( 。
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,3),頂點(diǎn)坐標(biāo)為(1,4),
(1)求這個(gè)二次函數(shù)的解析式;
(2)求圖象與x軸交點(diǎn)A、B兩點(diǎn)的坐標(biāo);
(3)圖象與y軸交點(diǎn)為點(diǎn)C,求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莒南縣二模)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).
其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;
③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于-1的實(shí)數(shù)根;⑤2a+b=0.其中,正確的說(shuō)法有
②④⑤
②④⑤
.(請(qǐng)寫(xiě)出所有正確說(shuō)法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),已知A點(diǎn)坐標(biāo)為(-1,0),且對(duì)稱(chēng)軸為直線(xiàn)x=2,則B點(diǎn)坐標(biāo)為
(5,0)
(5,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案