【題目】1)如圖1,在⊙O中,AB是直徑,弦EFAB,在直徑AB下方的半圓上有一個(gè)定點(diǎn)H(點(diǎn)H不與點(diǎn)AB重合),請(qǐng)僅用無刻度的直尺畫出劣弧的中點(diǎn)P,并在直線AB上畫出點(diǎn)G,使直線AB平分∠HGP.(保留作圖痕跡,不寫作法)

    

2尺規(guī)作圖:如圖2,已知線段ac,請(qǐng)你用兩種不同的方法作RtABC,使其斜邊AB=c,一條直角邊BC=a.(保留作圖痕跡,不寫作法)

【答案】1)如圖所示見解析;(2)如圖所示見解析.

【解析】

1)連結(jié)AF、BE,作過AFBE的交點(diǎn)和圓心O的直線即可得出劣弧的中點(diǎn)P,該直線與圓O在直線AB下方交于一點(diǎn),作過該點(diǎn)和H點(diǎn)的直線與直線AB交于一點(diǎn),即為所求的G點(diǎn);

2)方法一根據(jù)直徑所對(duì)的圓周角為直角,先以AB為直徑作圓,再以B為圓心,a為半徑作圓可確定C點(diǎn),即可得RtABC;方法二利用作垂線的方法以C點(diǎn)為垂足作直線,再以B為圓心,c為半徑作圓可確定A點(diǎn),即可得RtABC

解:(1)如圖1所示,點(diǎn)P、點(diǎn)G即為所求;

2)方法一: 如圖2所示,RtABC即為所求;

方法二:如圖3所示,RtABC即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yax2+bx+3a≠0)與x軸分別交于A(﹣30),B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)E(﹣14),對(duì)稱軸交x軸于點(diǎn)F

1)請(qǐng)直接寫出這條拋物線和直線AE、直線AC的解析式;

2)連接ACAE、CE,判斷△ACE的形狀,并說明理由;

3)如圖2,點(diǎn)D是拋物線上一動(dòng)點(diǎn),它的橫坐標(biāo)為m,且﹣3m<﹣1,過點(diǎn)DDKx軸于點(diǎn)KDK分別交線段AE、AC于點(diǎn)GH.在點(diǎn)D的運(yùn)動(dòng)過程中,

DGGH、HK這三條線段能否相等?若相等,請(qǐng)求出點(diǎn)D的坐標(biāo);若不相等,請(qǐng)說明理由;

②在①的條件下,判斷CGAE的數(shù)量關(guān)系,并直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中成反比例成正比例,函數(shù)的自變量的取值范圍是,且當(dāng)時(shí),的值均為。

請(qǐng)對(duì)該函數(shù)及其圖象進(jìn)行如下探究:

1)解析式探究:根據(jù)給定的條件,可以確定出該函數(shù)的解析式為:

2)函數(shù)圖象探宄:①根據(jù)解析式,選取適當(dāng)?shù)淖宰兞?/span>,并完成下表:

...

...

②根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出函數(shù)圖象.

3)結(jié)合畫出的函數(shù)圖象,解決問題:

①當(dāng),,時(shí),函數(shù)值分別為,則的大小關(guān)系為: (用表示)

②若直線與該函數(shù)圖象有兩個(gè)交點(diǎn),則的取值范圍是 ,此時(shí),的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展我最喜愛的一項(xiàng)體育活動(dòng)調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

結(jié)合以上信息解答下列問題:

1m   

2)請(qǐng)補(bǔ)全上面的條形統(tǒng)計(jì)圖;

3)在圖2中,乒乓球所對(duì)應(yīng)扇形的圓心角=   ;

4)已知該校共有2100名學(xué)生,請(qǐng)你估計(jì)該校約有多少名學(xué)生最喜愛足球活動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑是2,點(diǎn)A,B在⊙O上,且∠AOB90°,動(dòng)點(diǎn)C在⊙O上運(yùn)動(dòng)(不與A,B重合),點(diǎn)D為線段BC的中點(diǎn),連接AD,則線段AD的長度最大值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】哈市某中學(xué)為了解九年級(jí)學(xué)生體能狀況,從九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果外為A、BC、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:

1)本次抽樣調(diào)查共抽取了多少名學(xué)生?

2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)若九年級(jí)共有600名學(xué)生,請(qǐng)你估計(jì)九年級(jí)學(xué)生中體能測試結(jié)果為D等級(jí)的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c的圖象的一部分,對(duì)稱軸是直線x1

①b24ac ②4a+2b+c0;不等式ax2+bx+c0的解集是x3.5若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1y2.上述4個(gè)判斷中,正確的是(  )

A.①②B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB60°,半徑為2的⊙M與邊OAOB相切,若將⊙M水平向左平移,當(dāng)⊙M與邊OA相交時(shí),設(shè)交點(diǎn)為EF,且EF6,則平移的距離為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,DE平分∠ADCBC邊于點(diǎn)E,PDE上的一點(diǎn)(PEPD),PMPD,PMAD邊于點(diǎn)M.

(1)若點(diǎn)F是邊CD上一點(diǎn),滿足PFPN,且點(diǎn)N位于AD邊上,如圖1所示.

求證:①PN=PF;DF+DN=DP;

(2)如圖2所示,當(dāng)點(diǎn)FCD邊的延長線上時(shí),仍然滿足PFPN,此時(shí)點(diǎn)N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案