【題目】(1)如圖1,在⊙O中,AB是直徑,弦EF∥AB,在直徑AB下方的半圓上有一個定點H(點H不與點A,B重合),請僅用無刻度的直尺畫出劣弧的中點P,并在直線AB上畫出點G,使直線AB平分∠HGP.(保留作圖痕跡,不寫作法)
(2)尺規(guī)作圖:如圖2,已知線段a、c,請你用兩種不同的方法作Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.(保留作圖痕跡,不寫作法)
【答案】(1)如圖所示見解析;(2)如圖所示見解析.
【解析】
(1)連結(jié)AF、BE,作過AF與BE的交點和圓心O的直線即可得出劣弧的中點P,該直線與圓O在直線AB下方交于一點,作過該點和H點的直線與直線AB交于一點,即為所求的G點;
(2)方法一根據(jù)直徑所對的圓周角為直角,先以AB為直徑作圓,再以B為圓心,a為半徑作圓可確定C點,即可得Rt△ABC;方法二利用作垂線的方法以C點為垂足作直線,再以B為圓心,c為半徑作圓可確定A點,即可得Rt△ABC.
解:(1)如圖1所示,點P、點G即為所求;
(2)方法一: 如圖2所示,Rt△ABC即為所求;
方法二:如圖3所示,Rt△ABC即為所求.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)與x軸分別交于A(﹣3,0),B兩點,與y軸交于點C,拋物線的頂點E(﹣1,4),對稱軸交x軸于點F.
(1)請直接寫出這條拋物線和直線AE、直線AC的解析式;
(2)連接AC、AE、CE,判斷△ACE的形狀,并說明理由;
(3)如圖2,點D是拋物線上一動點,它的橫坐標為m,且﹣3<m<﹣1,過點D作DK⊥x軸于點K,DK分別交線段AE、AC于點G、H.在點D的運動過程中,
①DG、GH、HK這三條線段能否相等?若相等,請求出點D的坐標;若不相等,請說明理由;
②在①的條件下,判斷CG與AE的數(shù)量關(guān)系,并直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中與成反比例與成正比例,函數(shù)的自變量的取值范圍是,且當或時,的值均為。
請對該函數(shù)及其圖象進行如下探究:
(1)解析式探究:根據(jù)給定的條件,可以確定出該函數(shù)的解析式為: .
(2)函數(shù)圖象探宄:①根據(jù)解析式,選取適當?shù)淖宰兞?/span>,并完成下表:
... | ||||||||||
... |
②根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出函數(shù)圖象.
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
①當,,時,函數(shù)值分別為,則的大小關(guān)系為: (用“”或“”表示)
②若直線與該函數(shù)圖象有兩個交點,則的取值范圍是 ,此時,的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展“我最喜愛的一項體育活動”調(diào)查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結(jié)果繪制成不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
結(jié)合以上信息解答下列問題:
(1)m= .
(2)請補全上面的條形統(tǒng)計圖;
(3)在圖2中,乒乓球所對應(yīng)扇形的圓心角= ;
(4)已知該校共有2100名學生,請你估計該校約有多少名學生最喜愛足球活動.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑是2,點A,B在⊙O上,且∠AOB=90°,動點C在⊙O上運動(不與A,B重合),點D為線段BC的中點,連接AD,則線段AD的長度最大值是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】哈市某中學為了解九年級學生體能狀況,從九年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果外為A、B、C、D四個等級,請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學生?
(2)通過計算補全條形統(tǒng)計圖;
(3)若九年級共有600名學生,請你估計九年級學生中體能測試結(jié)果為D等級的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.
①b2>4ac; ②4a+2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是拋物線上的兩點,則y1<y2.上述4個判斷中,正確的是( )
A.①②B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB=60°,半徑為2的⊙M與邊OA、OB相切,若將⊙M水平向左平移,當⊙M與邊OA相交時,設(shè)交點為E和F,且EF=6,則平移的距離為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,DE平分∠ADC交BC邊于點E,P為DE上的一點(PE<PD),PM⊥PD,PM交AD邊于點M.
(1)若點F是邊CD上一點,滿足PF⊥PN,且點N位于AD邊上,如圖1所示.
求證:①PN=PF;②DF+DN=DP;
(2)如圖2所示,當點F在CD邊的延長線上時,仍然滿足PF⊥PN,此時點N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com