【題目】某生利用標桿測量學校旗桿的高度,標桿CD等于3m,標桿與旗桿的水平距離BD15m,人的眼睛距地面的高度EF1.6m,人與標桿CD的水平距離DF2m.則旗桿AB的高度為_____

【答案】13.5 m.

【解析】

利用三角形相似中的比例關系,首先由題目和圖形可看出,求AB的長度分成了2個部分,AHHB部分,其中HB=EF=1.6m,剩下的問題就是求AH的長度,利用CGE∽△AHE,得出把相關條件代入即可求得AH=11.9m,得出AB的長即可.

如圖所示:

CDFB,ABFB,

CDAB

∴△CGE∽△AHE

即:

AH=11.9

AB=AH+HB=AH+EF=11.9+1.6=13.5(m).

故答案為:13.5 m.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(2,3)和點B(0,2),點A在反比例函數(shù)y=的圖象上,作射線AB,交反比例函數(shù)圖象于另一點M,再將射線AB繞點A按逆時針方向旋轉45°,交反比例函數(shù)圖象于點C,則CM的長度為( 。

A. 5 B. 6 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某中學有一塊四邊形的空地ABCD,學校計劃在空地上種植草皮,經(jīng)測量∠A90°AB3m,BC12m,CD13mDA4m

1)求這塊四邊形空地的面積;

2)若每平方米草皮需要200元,問學校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖是萊州經(jīng)濟產(chǎn)業(yè)的亮麗名片之一,某養(yǎng)殖場響應山東省加快新舊動能轉換的號召,今年采用新技術投資養(yǎng)殖了200萬籠扇貝,并且全部被訂購,已知每籠扇貝的成本是40元,售價是100元,打撈出售過程中發(fā)現(xiàn),一部分扇貝生長情況不合要求,最后只能按照25元一籠出售,如果純收入為萬元,不合要求的扇貝有萬籠.

1)求純收入關于的關系式.

2)當為何值時,養(yǎng)殖場不賠不嫌?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線ykx+3x軸、y軸的交點分別為BC,∠OBC30°,點A的坐標是(﹣,0),另一條直線經(jīng)過點A、C

1)求點B的坐標及k的值;

2)求證:ACBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:正方形ABCD,點ECB的延長線上,連接AE、DE,DE與邊AB交于點F,F(xiàn)GBEAE于點G.

(1)求證:GF=BF;

(2)若EB=1,BC=4,求AG的長;

(3)在BC邊上取點M,使得BM=BE,連接AMDE于點O.求證:FOED=ODEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,DE分別是BC、AC上的動點且BD=CE,連接ADBE相交于點F,連接CF,下列結論:①△ABD≌△BCE;②∠AFB=120°;③若BD=CD,則FA=FB=FC;④∠AFC=90°,則AF=3BF,其中正確的結論共有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,且面積是24的垂直平分線分別交邊于點,若點邊的中點,點為線段上一動點,則周長的最小值為(

A.9B.10C.11D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蜀山區(qū)植物園是一座三面環(huán)水的半島園區(qū),擁有梅園、桂花園、竹園、木蘭園、水景園等示范區(qū)。為了種植植物,需要從甲乙兩地向園區(qū)AB兩個大棚配送營養(yǎng)土,已知甲地可調出50噸營養(yǎng)土,乙地可調出80噸營養(yǎng)土,A棚需70噸營養(yǎng)土,B棚需60噸營養(yǎng)土,甲乙兩地運往A,B兩棚的運費如下表所示(表中運費欄“元/噸”表示運送每噸營養(yǎng)土所需費用)。

運費(元/噸)

A

B

甲地

12

12

乙地

10

8

運往A、B兩地的噸數(shù)

A

B

甲地

x

50-x

乙地

1)設甲地運往A棚營養(yǎng)土x噸,請用關于x的代數(shù)式完成上表;

2)設甲地運往A棚營養(yǎng)土x噸,求總運費y(元)關于x(噸)的函數(shù)關系式(要求寫出變量取值范圍);

3)當甲、乙兩地各運往AB兩棚多少噸營養(yǎng)土時,總運費最省?最省的總運費是多少?

查看答案和解析>>

同步練習冊答案