【題目】經過三邊都不相等的三角形的一個頂點的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD△ABC的完美分割線

2)在△ABC中,∠A=52°,CD△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).

3)如圖2,△ABC中,AC=3,BC=2,CD△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

【答案】(1)詳見解析;(2)ACB=96°104°;(3.

【解析】試題分析:1)根據(jù)完美分割線的定義只要證明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.

2)分三種情形討論即可①如圖2,當ADCD時,②如圖3中,當ADAC時,③如圖4中,當ACCD時,分別求出∠ACB即可.

3)設BDx,利用BCD∽△BAC,得,列出方程即可求出BD的長,然后再根據(jù)相似三角形的性質即可求出CD的長

試題解析:

1)證明:如圖1中,

∵∠A40°,∠B60°,

∴∠ACB80°

∴△ABC不是等腰三角形,

CD平分∠ACB,

∴∠ACD=∠BCDACB40°,

∴∠ACD=∠A40°

∴△ACD為等腰三角形,

∵∠DCB=∠A40°,∠CBD=∠ABC,

∴△BCD∽△BAC,

CDABC的完美分割線.      

2)①當ADCD時,如圖2,

ACD=∠A52°

∵△BDC∽△BCA,

∴∠BCD=∠A52°,

∴∠ACB=∠ACD+∠BCD104°.         

②當ADAC時,如圖3中,

ACD=∠ADC64°,

∵△BDC∽△BCA,

∴∠BCD=∠A52°,

∴∠ACB=∠ACD+∠BCD116°.       

③當ACCD時,如圖4中,

ADC=∠A52°

∵△BDC∽△BCA,

∴∠BCD=∠A52°,

∴∠ADC=∠BCD

∵∠ADC>∠BCD,矛盾,舍棄.

綜上所述,∠ACB96°104°.           

3)由已知ACAD3,

∵△BCD∽△BAC,

,設BDx,

22xx3),

x0,

x1

∵△BCD∽△BAC,

,即,

CD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】用A、B兩種機器人搬運大米,A型機器人比B型機器人每小時多搬運20袋大米,A型機器人搬運700袋大米與B型機器人搬運500袋大米所用時間相等.求A、B型機器人每小時分別搬運多少袋大米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(類比學習)規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如4÷4÷4,(-2÷-2÷-2÷-2÷-2)等.類比有理數(shù)的乘方,我們把4÷4÷4記作,讀作“43次除方,(-2÷-2÷-2÷-2÷-2)記作,讀作“-25次除方”.

(探究活動)(1)直接寫出計算結果: =

2)下列說法不正確的是(

A.任何非零有理數(shù)的2次除方都等于1 B.負數(shù)的奇數(shù)次除方是負數(shù)

C.負數(shù)的偶數(shù)次除方是正數(shù) D32次除方等于23次除方

(深入思考)有理數(shù)的乘方運算可以轉化為乘法運算,從而得出結果.那么有理數(shù)的除方運算與熟悉的運算一起,該如何進行?有理數(shù)的除方與有理數(shù)的乘方之間有何聯(lián)系?

3)計算:

4)直接寫出2019之間的關系:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖一,拋物線x軸正半軸交于A、B兩點,與y軸交于點C,直線經過A、C兩點,且

求拋物線的解析式;

若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,如圖;當點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設,當t為何值時,s有最小值,并求出最小值.

的條件下,是否存在t的值,使以P、B、D為頂點的三角形與相似;若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,A(-10),B30),將線段AB先向上平移個單位,再向右平移1個單位,得到線段CD,其中點A的對應點是點C.連接AC,BD,CD

1)根據(jù)題意畫出圖形,直接寫出C,D坐標;

2)連接AD 線段AD軸交于點E,請用已經學過的知識求出E點的坐標(提示:請注意四邊形ABDC的形狀);

3P(m,n)是坐標系內任一點,且,連接PCPD,PO,PB,當,時,這樣的點P存在嗎?有幾個?并求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖ABC三個頂點的坐標分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網格中,每個小正方形的邊長是1個單位長度.

(1)畫出ABC向上平移6個單位得到的A1B1C1

(2)以點C為位似中心,在網格中畫出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比為2:1,并直接寫出點A2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班要在一面墻上同時展示數(shù)張形狀、大小均相同的矩形繪畫作品,將這些作品排成一個矩形(作品不完全重合).現(xiàn)需要在每張作品的四個角落都釘上圖釘,如果作品有角落相鄰,那么相鄰的角落共享一枚圖釘(例如用9枚圖釘將4張作品釘在墻上如圖).若有28枚圖釘可供選用,則最多可以展示繪畫作品( 。

A. 16B. 18C. 20D. 21

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB兩地相距120千米,甲乙兩人沿同一條公路勻速行駛,甲騎自行車以20千米/時從A地前往B地,同時乙騎摩托車從B地前往A地,設兩人之間的距離為s(千米),甲行駛的時間為t(小時),若st的函數(shù)關系如圖所示,則下列說法錯誤的是( 。

A.經過2小時兩人相遇

B.若乙行駛的路程是甲的2倍,則t=3

C.當乙到達終點時,甲離終點還有60千米

D.若兩人相距90千米,則t=0.5t=4.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,□ABCD的對角線AC,BD相交于點O,OAB是等邊三角形,AB4,則□ABCD的面積等于________

查看答案和解析>>

同步練習冊答案