【題目】如圖,∠AOC=∠BOC,點P在OC上,PD⊥OA于點D,PE⊥OB于點E.若OD=8,OP=10,則PE的長為( 。
A.5
B.6
C.7
D.8

【答案】B
【解析】解:∵PD⊥OA, ∴∠PDO=90°,
∵OD=8,OP=10,
∴PD= =6,
∵∠AOC=∠BOC,點P在OC上,PD⊥OA,PE⊥OB,
∴PE=PD=6.
故選B.
【考點精析】根據(jù)題目的已知條件,利用角平分線的性質(zhì)定理和勾股定理的概念的相關(guān)知識可以得到問題的答案,需要掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為支援雅安災(zāi)區(qū),某學校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學習用品共1000件,已知A型學習用品的單價為20元,B型學習用品的單價為30元.

(1)若購買這批學習用品用了26000元,則購買A,B兩種學習用品各多少件?

(2)若購買這批學習用品的錢不超過28000元,則最多購買B型學習用品多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1,∠2互為補角,且∠3=B,

(1)求證:∠AFE=ACB

(2)CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,PAD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應(yīng)點為點E),PECD相交于點O,且OE=OD.

(1)求證:PE=DH;

(2)若AB=10,BC=8,求DP的長.

【答案】1見解析;2

【解析】試題分析:(1) 先證明DOP≌△EOH,再利用等量代換得到PE=DH.

(2) 設(shè)DP=x RtBCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.

試題解析:

1)解:證明:OD=OE,D=∠E=90°,DOP=∠EOH

∴△DOP≌△EOH,

OP=OH,

PO+OE=OH+OD,

PE=DH.

2)解:設(shè)DP=x,則EH=x,BH=10﹣x,

CH=CDDH=CDPE=10﹣8﹣x=2+x,

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2,

x=,

DP=

型】解答
結(jié)束】
25

【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數(shù)量是用75元購進B種套裝數(shù)量的2倍.

(1)求A,B兩種品牌套裝每套進價分別為多少元?

(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數(shù)量比購進A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠BAC的平分線與BC的垂直平分線相交于點D,DEAB,DFAC,垂足分別為E,F(xiàn),AB=6,AC=3,則BE=( )

A. 6 B. 3 C. 2 D. 1.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知EFG≌△NMH, FM是對應(yīng)角.

1)寫出相等的線段與相等的角;

2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MNHG的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是直線AB上一點,OC是任意一條射線,OD,OE分別是∠AOC和∠BOC的平分線,

(1)圖中∠BOD的補角是_______________;∠BOE的余角是____________________.

(2)如果∠BOE=∠AOD, 求∠BOE的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=3x的圖象與反比例函數(shù)y= 的圖象交于點A(1,m)和點B.
(1)求m的值和反比例函數(shù)的解析式.
(2)觀察圖象,直接寫出使正比例函數(shù)的值大于反比例函數(shù)的值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組在本校九年級學生中以“你最喜歡的一項體育運動”為主題進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖圖表:

項目

籃球

乒乓球

羽毛球

跳繩

其他

人數(shù)

a

12

10

5

8

請根據(jù)圖表中的信息完成下列各題:

(1)本次共調(diào)查學生名;
(2)a= , 表格中五個數(shù)據(jù)的中位數(shù)是;
(3)在扇形圖中,“跳繩”對應(yīng)的扇形圓心角是;
(4)如果該年級有450名學生,那么據(jù)此估計大約有人最喜歡“乒乓球”.

查看答案和解析>>

同步練習冊答案