用兩種正多邊形鋪成的圖案,這兩種正多邊形分別是_____________________.

 

【答案】

正三角形和正六邊形或正三角形和正方形

【解析】本題考查了平面鑲嵌的條件

正多邊形的組合能否構(gòu)成平面鑲嵌,關(guān)鍵是看位于同一頂點(diǎn)處的幾個(gè)角之和能否為360°.若能,則說明能鑲嵌;反之,則說明不能鑲嵌.

正三角形的每個(gè)內(nèi)角是,正方形的每個(gè)內(nèi)角是,正六邊形每個(gè)內(nèi)角為,

,,

兩種正多邊形分別是正三角形和正六邊形或正三角形和正方形.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

我們常用各種多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里稱為平面密鋪).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角和為360°時(shí),就能夠拼成一個(gè)平面圖形.
探究用同一種正多邊形進(jìn)行平面密鋪.
例如:如圖1,用三個(gè)同種類型(大小一樣、形狀相同)的正六邊形地磚可以平面密鋪.
(1)請(qǐng)問僅限于同一種類型的多邊形進(jìn)行密鋪,哪幾種能平面密鋪?
①②
①②
(填序號(hào));
①正三角形    ②正四邊形     ③正五邊形     ④正八邊形
探究用兩種邊長相等的正多邊形進(jìn)行平面密鋪.
例如:如圖2,二個(gè)正三角形和二個(gè)正六邊形可以平面密鋪.
(2)限用兩種邊長相等的正多邊形進(jìn)行平面密鋪,以下哪幾種是可行的?
ABE
ABE

A.正三角形和正方形      B.正方形和正八邊形         C.正方形和正五邊形
D.正八邊形和正六邊形    E.正三角形和正十二邊形    F.正三角形和正五邊形
(3)繼續(xù)推廣到用三種不同的正多邊形進(jìn)行平面密鋪,請(qǐng)寫出符合題意的不同組合.
例如:①正三角形、正方形、正六邊形;
②正三角形、正九邊形、正十八邊形;
正三角形、正四邊形,正十二邊形
正三角形、正四邊形,正十二邊形

正三角形,正十邊形,正十五邊形
正三角形,正十邊形,正十五邊形

(4)如果用形狀,大小相同的如圖3方格紙中的三角形,能進(jìn)行平面密鋪嗎?若能,請(qǐng)?jiān)诜礁窦堉挟嫵雒茕伒脑O(shè)計(jì)圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案