【題目】如圖,在矩形ABCD中,E是AB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連接AP并延長AP交CD于F點,連接CP并延長CP交AD于Q點.給出以下結論:①四邊形AECF為平行四邊形;②∠PBA=∠APQ;③△FPC為等腰三角形;④△APB≌△EPC;其中正確結論的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】
①根據(jù)三角形內(nèi)角和為180°易證∠PAB+∠PBA=90°,可證四邊形AECF為平行四邊形;
②根據(jù)平角定義得∠APQ+∠BPC=90°,再加上正方形所有內(nèi)角都是直角,再由同角的余角相等,即可解題;
③由翻折得∠FPC=∠PCE=∠BCE,∠FPC∠FCP,∠PFC是鈍角,△PCF不一定是等腰三角形;
④當BP=AD或△BPC是等邊三角形時,△APB≌△FDA,即可解題.
①設EC,BP交于點G;
∵點P是點B關于直線EC的對稱點,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB.
∵點E為AB中點,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA.
∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;
∵AE∥CF,∴四邊形AECF是平行四邊形,故①正確;
②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折疊得:BC=PC,∴∠BPC=∠PBC.
∵四邊形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正確;
③∵AF∥EC,∴∠FPC=∠PCE=∠BCE.
∵∠PFC是鈍角,當△BPC是等邊三角形,即∠BCE=30°時,才有∠FPC=∠FCP,如右圖,△PCF不一定是等腰三角形,故③不正確;
④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL).
∵∠ADF=∠APB=90°,∠FAD=∠ABP,當BP=AD或△BPC是等邊三角形時,△APB≌△FDA,∴△APB≌△EPC,故④不正確;
其中正確結論有①②,2個.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=4.
(1)求證:PC是⊙O的切線.
(2)求tan∠CAB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為直線BC上一動點(不與點B,C重合),在AD的右側作△ACE,使得AE=AD,∠DAE=∠BAC,連接CE.
(1)當D在線段上時.
①求證:.
②請判斷點D在何處時,,并說明理由.
(2)當時,若中最小角為28°,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,在邊上,在線段上,,是等邊三角形,邊交邊于點,邊交邊于點.
求證:;
當為何值時,以為圓心,以為半徑的圓與相切?
設,五邊形的面積為,求與之間的函數(shù)解析式(要求寫出自變量的取值范圍);當為何值時,有最大值?并求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標平面內(nèi),△ABC的三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).
(1)填空:∠ ABC= ,S△ABC= ;
(2)畫出△ABC關于x軸的對稱圖形△A1B1C1,再畫出△A1B1C1關于y軸的對稱圖形△A2B2C2,在x軸上作一點p,使p到A,C兩點間的距離和最短;
(3)若M是△ABC內(nèi)一點,其坐標是(a,b),則△A2B2C2中,點M的對應點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點,OC平分∠AOB交AB于點C,點D為線段AB上一點,過點D作DE∥OC交y軸于點E,已知AO=m,BO=n,且m、n滿足n2﹣8n+16+|n﹣2m|=0.
(1)求A、B兩點的坐標;
(2)若點D為AB中點,求OE的長;
(3)如圖2,若點P(x,﹣2x+4)為直線AB在x軸下方的一點,點E是y軸的正半軸上一動點,以E為直角頂點作等腰直角△PEF,使點F在第一象限,且F點的橫、縱坐標始終相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的布袋中裝有4個只有顏色不同的球,其中1個黃球、1個藍球、2個紅球.
(1)任意摸出1個球,記下顏色后不放回,再任意摸出1個球.求兩次摸出的球恰好都是紅球的概率(要求畫樹狀圖或列表);
(2)現(xiàn)再將n個黃球放入布袋,攪勻后,使任意摸出1個球是黃球的概率為,求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,EF//BC交AC、CF于M、F,若EM=3,則CE2+CF2 的值為( )
A.36B.9C.6D.18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年12月18日,新版《北京市生活垃圾管理條例》正式發(fā)布,并將在2020年5月1日起正式實施,這標志著北京市生活垃圾分類將正式步入法制化、常態(tài)化、系統(tǒng)化軌道.目前,相關配套設施的建設已經(jīng)開啟.如圖,計劃在某小區(qū)道路l上建一個智能垃圾分類投放點O,使得道路l附近的兩棟住宅樓A,B到智能垃圾分類投放點O的距離相等.
(1)請在圖中利用尺規(guī)作圖(保留作圖痕跡,不寫作法),確定點O的位置;
(2)確定點O位置的依據(jù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com