【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連接AP并延長APCDF點,連接CP并延長CPADQ點.給出以下結論:①四邊形AECF為平行四邊形;②∠PBA=APQ;③△FPC為等腰三角形;④△APB≌△EPC;其中正確結論的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

①根據(jù)三角形內(nèi)角和為180°易證∠PAB+PBA=90°,可證四邊形AECF為平行四邊形
②根據(jù)平角定義得∠APQ+BPC=90°,再加上正方形所有內(nèi)角都是直角,再由同角的余角相等,即可解題
③由翻折得∠FPC=PCE=BCE,FPCFCP,PFC是鈍角,PCF不一定是等腰三角形;
BP=AD或△BPC是等邊三角形時,△APB≌△FDA,即可解題.

①設EC,BP交于點G;
∵點P是點B關于直線EC的對稱點,∴EC垂直平分BP,EP=EB,∴∠EBP=EPB.
∵點EAB中點,∴AE=EB,AE=EP,∴∠PAB=PBA.
∵∠PAB+PBA+APB=180°,即∠PAB+PBA+APE+BPE=2(PAB+PBA)=180°,∴∠PAB+PBA=90°,APBP,AFEC;
AECF,∴四邊形AECF是平行四邊形,故①正確;
②∵∠APB=90°,∴∠APQ+BPC=90°,由折疊得:BC=PC,∴∠BPC=PBC.
∵四邊形ABCD是正方形,∴∠ABC=ABP+PBC=90°,∴∠ABP=APQ,故②正確;
③∵AFEC,∴∠FPC=PCE=BCE.
∵∠PFC是鈍角,當△BPC是等邊三角形,即∠BCE=30°時,才有∠FPC=FCP,如右圖,△PCF不一定是等腰三角形,故③不正確;
④∵AF=EC,AD=BC=PC,ADF=EPC=90°,RtEPC≌△FDA(HL).
∵∠ADF=APB=90°,FAD=ABP,當BP=AD或△BPC是等邊三角形時,△APB≌△FDA,∴△APB≌△EPC,故④不正確;
其中正確結論有①②,2個.
故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=4.

(1)求證:PC是⊙O的切線.

(2)tanCAB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為直線BC上一動點(不與點BC重合),在AD的右側作△ACE,使得AE=AD,∠DAE=BAC,連接CE

1)當D在線段上時.

①求證:

②請判斷點D在何處時,,并說明理由.

2)當時,若中最小角為28°,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,在邊上,在線段上,,是等邊三角形,邊交邊于點,邊交邊于點

求證:;

為何值時,以為圓心,以為半徑的圓與相切?

,五邊形的面積為,求之間的函數(shù)解析式(要求寫出自變量的取值范圍);當為何值時,有最大值?并求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標平面內(nèi),ABC的三個頂點的坐標分別為A03),B3,4),C2,2).

1)填空:∠ ABC   ,SABC   ;

2)畫出ABC關于x軸的對稱圖形A1B1C1,再畫出A1B1C1關于y軸的對稱圖形A2B2C2,x軸上作一點p,使pA,C兩點間的距離和最短;

3)若MABC內(nèi)一點,其坐標是(a,b),則A2B2C2中,點M的對應點的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點,OC平分∠AOBAB于點C,點D為線段AB上一點,過點DDEOCy軸于點E,已知AOm,BOn,且m、n滿足n28n+16+|n2m|0

1)求AB兩點的坐標;

2)若點DAB中點,求OE的長;

3)如圖2,若點Px,﹣2x+4)為直線ABx軸下方的一點,點Ey軸的正半軸上一動點,以E為直角頂點作等腰直角PEF,使點F在第一象限,且F點的橫、縱坐標始終相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的布袋中裝有4個只有顏色不同的球,其中1個黃球、1個藍球、2個紅球.

(1)任意摸出1個球,記下顏色后不放回,再任意摸出1個球.求兩次摸出的球恰好都是紅球的概率(要求畫樹狀圖或列表);

(2)現(xiàn)再將n個黃球放入布袋,攪勻后,使任意摸出1個球是黃球的概率為,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ACDABC的外角,CE平分∠ACB,交ABE,CF平分∠ACDEF//BCAC、CFMF,EM=3,則CE2+CF2 的值為( )

A.36B.9C.6D.18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20191218日,新版《北京市生活垃圾管理條例》正式發(fā)布,并將在202051日起正式實施,這標志著北京市生活垃圾分類將正式步入法制化、常態(tài)化、系統(tǒng)化軌道.目前,相關配套設施的建設已經(jīng)開啟.如圖,計劃在某小區(qū)道路l上建一個智能垃圾分類投放點O,使得道路l附近的兩棟住宅樓,B到智能垃圾分類投放點O的距離相等.

1)請在圖中利用尺規(guī)作圖(保留作圖痕跡,不寫作法),確定點O的位置;

2)確定點O位置的依據(jù)為

查看答案和解析>>

同步練習冊答案