【題目】(8分)某中學(xué)九年級(jí)學(xué)生在學(xué)習(xí)“直角三角形的邊角關(guān)系”時(shí),組織開(kāi)展測(cè)量物體高度的實(shí)踐活動(dòng).在活動(dòng)中,某小組為了測(cè)量校園內(nèi)①號(hào)樓AB的高度(如圖),站在②號(hào)樓的C處,測(cè)得①號(hào)樓頂部A的仰角α=30°,底部B的俯角β=45°.已知兩幢樓的水平距離BD為18米,求①號(hào)樓AB的高度.(結(jié)果保留根號(hào))

【答案】(18+6)米

【解析】試題分析:根據(jù)在RtBCE中,tanBCE=,求出BE的值,再根據(jù)在RtACE中,tanACE=,求出AE的值,最后根據(jù)AB=AE+BE,即可求出答案.

試題解析:∵AB⊥BD,CD⊥BDCE⊥AB四邊形CDBE是矩形,∴CE=BD=18

Rt△BEC中,∵∠ECB=45°∴EB=CE=18

RtAEC中,tanACE=,AE=CEtanACE=18×tan 30°=6,

AB=AE+EB=18+6

答:號(hào)樓AB的高為(18+6)米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小偉欲用撬棍撬動(dòng)一塊大石頭,已知阻力和阻力臂分別為1200N和0.5m,當(dāng)撬動(dòng)石頭的動(dòng)力F至少需要400N時(shí),則動(dòng)力臂l的最大值為m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是( 。

A. a2+a2a4B. a6÷a2a3

C. (﹣2a3=﹣8a3D. a+12a2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一個(gè)數(shù)寫(xiě)成a×10n1a10,n為整數(shù))的形式為3.57×105.則原數(shù)為( 。

A. 0.0000357B. 0.000357C. 357000D. 3570000

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 . (把所有正確結(jié)論的序號(hào)都填在橫線上) ①∠DCF= ∠BCD;②EF=CF;③SBEC=2SCEF;④∠DFE=3∠AEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(﹣1,5)在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把二次函數(shù)y2x28x+9,化成yaxh2+k的形式是:___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】楚天汽車(chē)銷(xiāo)售公司5月份銷(xiāo)售某種型號(hào)汽車(chē),當(dāng)月該型號(hào)汽車(chē)的進(jìn)價(jià)為30萬(wàn)元/輛,若當(dāng)月銷(xiāo)售量超過(guò)5輛時(shí),每多售出1輛,所有售出的汽車(chē)進(jìn)價(jià)均降低0.1萬(wàn)元/輛.根據(jù)市場(chǎng)調(diào)查,月銷(xiāo)售量不會(huì)突破30臺(tái).
(1)設(shè)當(dāng)月該型號(hào)汽車(chē)的銷(xiāo)售量為x輛(x≤30,且x為正整數(shù)),實(shí)際進(jìn)價(jià)為y萬(wàn)元/輛,求y與x的函數(shù)關(guān)系式;
(2)已知該型號(hào)汽車(chē)的銷(xiāo)售價(jià)為32萬(wàn)元/輛,公司計(jì)劃當(dāng)月銷(xiāo)售利潤(rùn)25萬(wàn)元,那么該月需售出多少輛汽車(chē)?(注:銷(xiāo)售利潤(rùn)=銷(xiāo)售價(jià)﹣進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:善于思考的小軍在解方程組時(shí),采用了一種“整體代換”的解法:
解:將方程②變形:4x+10y+y=5 即2(2x+5y)+y=5③
把方程①帶入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程組的解為
請(qǐng)你解決以下問(wèn)題:
(1)模仿小軍的“整體代換”法解方程組;
(2)已知x,y滿足方程組
(i)求x2+4y2的值;
(ii)求+的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案