平行四邊形的對角線分別為a和b,一邊長為12,則a和b的值可能是下面各組的數(shù)據(jù)中的( 。
A.8和4B.10和14C.18和20D.10和38
∵四邊形ABCD是平行四邊形,
∴OA=OC=
1
2
AC=
1
2
a,OB=OD=
1
2
BD=
1
2
b,BC=12,
根據(jù)三角形三邊關(guān)系可得:
1
2
a+
1
2
b>12,|
1
2
b-
1
2
a|<12,
即:a+b>24,|a-b|<24,
然后代入數(shù)值檢驗(yàn).即可得C符合要求.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面材料:
如果一個三角形和一個平行四邊形滿足條件:三角形的一邊與平行四邊形的一邊重合,三角形這邊所對的頂點(diǎn)在平行四邊形這邊的對邊上,則稱這樣的平行四邊形為三角形的“友好平行四邊形”.如圖1 所示,平行四邊形ABCD即為△ABC的“友好平行四邊形”.
請解決下列問題:
(1)仿照以上敘述,說明什么是一個三角形的“友好矩形”;
(2)若△ABC是鈍角三角形,則△ABC顯然只有一個“友好矩形”, 若△ABC是直角三角形,其“友好矩形”有           個;
(3)若△ABC是銳角三角形,且,如圖2,請畫出△ABC的所有“友好矩形”;指出其中周長最小的“友好矩形”并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,∠MBN的兩邊BM,BN上分別有兩點(diǎn)A、C,滿足BC=2BA,作?ABCD,取AD的中點(diǎn)E,作CF⊥CD,CF與AB所在的直線交于點(diǎn)F.
(1)當(dāng)∠B=90°時,直接寫出∠DEF的度數(shù);
(2)在射線BM繞B點(diǎn)旋轉(zhuǎn)的過程中,若∠B=x°,∠DEF=y°(0°<x<180°,0°<y<180°),求:y關(guān)于x的函數(shù)解析式及相應(yīng)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,四邊形ABCD是平行四邊形,那么下列說法正確的有( 。
①四邊形ABCD是平行四邊形,記做“四邊形ABCD是?”;
②BD把四邊形ABCD分成兩個全等的三角形;
③ADBC,且ABCD;
④四邊形ABCD是平行四邊形,可以記做“?ABDC”.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知在?ABCD中,∠A比∠B大40°,則∠C的度數(shù)為( 。
A.110°B.120°C.70°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,E是AD邊上的中點(diǎn).若∠ABE=∠EBC,AB=2,則平行四邊形ABCD的周長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,E為?ABCD中DC邊的延長線上一點(diǎn),且CE=DC,連接AE,分別交BC、BD于點(diǎn)F、G,連接AC交BD于O,連接OF,判斷AB與OF的位置關(guān)系和大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在?ABCD中,EFBD,分別交BC、CD于點(diǎn)P、Q,分別交AB、AD的延長線于點(diǎn)E、F,BE=BP.
(1)若∠E=70度,求∠F的度數(shù).
(2)求證:△ABD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知直角梯形ABCD的一條對角線把梯形分為一個直角三角形和一個以BC為底的等腰三角形.若梯形上底為5,則連接△DBC兩腰中點(diǎn)的線段的長為   

查看答案和解析>>

同步練習(xí)冊答案