如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)分別求出圖中直線和拋物線的函數(shù)表達(dá)式;
(2)連接PO、PC,并把△POC沿C O翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

解:(1)設(shè)直線BC的解析式為:y=mx+n,有:
,
解得:m=1,n=-3;
∴直線BC:y=x-3.
將點(diǎn)B、C的坐標(biāo)代入y=x2+bx+c中,得:
,
解得:b=-2,c=-3;
∴拋物線:y=x2-2x-3.

(2)由于菱形的對(duì)角線互相垂直平分,所以點(diǎn)P必在OC的垂直平分線上,則點(diǎn)P的縱坐標(biāo)為-,代入拋物線y=x2-2x-3中,得:
-=x2-2x-3,
解得 x1=,x2=(舍去)
∴點(diǎn)P(,-).
分析:(1)已知B、C的坐標(biāo),利用待定系數(shù)法進(jìn)行求解即可.
(2)由于四邊形POP′C為菱形,OC必為對(duì)角線,進(jìn)而可知OC的中垂線與y軸右邊的拋物線部分的交點(diǎn)即為P點(diǎn),且P點(diǎn)的縱坐標(biāo)為OC長(zhǎng)的一半的相反數(shù),最終可得P點(diǎn)的坐標(biāo).
點(diǎn)評(píng):本題考查了用待定系數(shù)法求函數(shù)解析式,以及圖形對(duì)稱變換,菱形的判定,點(diǎn)的坐標(biāo)的確定,一元二次方程的求解.(2)題中,首先根據(jù)菱形的性質(zhì)確定點(diǎn)P的縱坐標(biāo)是解題的關(guān)鍵所在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案