【題目】如圖,在ABC中,ACBC,∠ACB90°,AE平分∠BACBCE,BDAEAE延長線于D,DFACAC的延長線于F,連接CD,給出四個結(jié)論:① FDC22; 2BDAE;③ ACCEAB ABBC2FC.其中正確的結(jié)論有(

A.1B.2C.3D.4

【答案】D

【解析】

EEQABQ,作∠ACN=BCD,交ADN,過DDHABH,根據(jù)角平分線性質(zhì)求出CE=EQDM=DH,根據(jù)勾股定理求出AC=AQ,AM=AH,根據(jù)等腰三角形的性質(zhì)和判定求出BQ=QE,即可求出③;根據(jù)三角形外角性質(zhì)求出∠CND=45°,證△ACN≌△BCD,推出CD=CN,即可求出①②;證△DCM≌△DBH,得到CM=BH,AM=AH,即可求出④.

解:如圖,

∵∠ACB=90°,AE平分∠CAB,

CE=EQ

∵∠ACB=90°,AC=BC,

∴∠CBA=CAB=45°,

EQAB,

∴∠EQA=EQB=90°,

由勾股定理得:AC=AQ,

∴∠QEB=45°=CBA,

EQ=BQ

AB=AQ+BQ=AC+CE,

∴③正確;

作∠ACN=BCD,交ADN,

∵∠CAD=CAB=22.5°=BAD,

∴∠ABD=90°22.5°=67.5°,

∴∠DBC=67.5°45°=22.5°=CAD,

∴∠DBC=CAD,

AC=BC,∠ACN=DCB,

∴△ACN≌△BCD,

CN=CDAN=BD,

∵∠ACN+NCE=90°,

∴∠NCB+BCD=90°,

∴∠CND=CDA=45°,

中,∠AFD=90°,∠FCD=22.5°,

∴∠FDA=67.5°,

∵∠FDC=FDA-CDA=22.5°,故①正確;

∴∠ACN=45°22.5°=22.5°=CAN,

AN=CN

∴∠NCE=AEC=67.5°,

CN=NE

CD=AN=EN=AE,

AN=BD

BD=AE,

故②正確;

DDHABH,

∵∠MCD=CAD+CDA=67.5°,

DBA=90°DAB=67.5°,

∴∠MCD=DBA,

AE平分∠CABDMAC,DHAB,

DM=DH,在△DCM和△DBH中∠M=DHB=90°,∠FCD=DBA,DF=DH

∴△DCF≌△DBH,

BH=CF,由勾股定理得:AF=AH,

,

AC+AB=2AF,AC+AB=2AC+2CF,ABAC=2CF

AC=CB

ABCB=2CF

∴④正確;

故答案選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018330日初2018級同學(xué)以優(yōu)異的成績在雙福育才中學(xué)完成了中招體育測試,初2019級為了準備明年的體考,對1、2、3、4進行了體考模擬測試,并對三個班的滿分進行了統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.

(1)扇形統(tǒng)計圖中2班體育成績滿分人數(shù)對應(yīng)的圓心角是   度;并補全條形統(tǒng)計圖;

(2)經(jīng)過體育老師推薦,這些滿分同學(xué)中有4名同學(xué)(13男)的跳遠動作十分標準,12班班主任準備從這4名同學(xué)中任選2名給自己班級的同學(xué)示范標準動作,請利用畫樹狀圖或列表的方法求出選出2名同學(xué)恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,正方形ABCD的頂點Dy軸上,A(﹣3,0),B1,b),則正方形ABCD的面積為( 。

A.34B.25C.20D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在等腰三角形ABC,∠A130°,求∠B的度數(shù)

2)在等腰三角形ABC中,∠A40°,求∠B的度數(shù).

3)根據(jù)(1)(2)問后發(fā)現(xiàn),∠A的度數(shù)不同,得到∠B的度數(shù)的個數(shù)也可能不同,如果在等腰三角形ABC中,設(shè)∠Ax°,當∠B有三個不同的度數(shù)時,請你探索x的取值范圍,并用含x的式子表示∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象過點A(3,2).

(1)試求該反比例函數(shù)的表達式;

(2)Mm,n)是反比例函數(shù)圖象上的一動點,其中0<m<3,過點M作直線MBx軸,交y軸于點B;過點A作直線ACy軸,交x軸于點C,交直線MB于點D.當四邊形OADM的面積為6時,請判斷線段BMDM的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2

方程 的兩個根是x1=1,x2=3;

③3a+c0

y0時,x的取值范圍是﹣1≤x3

x0時,yx增大而增大

其中結(jié)論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標系中,A0a)、Bb1,0),且ab滿足a212a360,

1)求AB兩點的坐標;

2)點C在線段BO上(C不與端點B、O重合),點D在線段AO上(D不與端點A、O重合),連CD,過DCD的垂線交ABP,若BC2DO,設(shè)C點橫坐標為t,求P點橫坐標(用含t的代數(shù)式表示).

3)在(2)的條件下,連BD, NBO中點,NMBO,交BD于點M,連AM,若BDPB,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點AD、C、F在同一條直線上,ABDE,∠A=∠EDF,再添加一個條件,可使△ABC DEF,下列條件不符合的是

A.B=∠EB.BCEFC.ADCFD.ADDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿DEEF翻折,頂點AB均落在點O處,且EAEB重合于線段EO,若∠CDO+∠CFO=100°,則∠C的度數(shù)為( 。

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

同步練習(xí)冊答案