圖中的射線可以表示為________.

答案:射線AB
解析:

正解:射線AB


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B在線段MN上,若MA=AB=BN,則稱A、B都為線段MN上的三等分點.則角的三等分線可以照此定義.精英家教網(wǎng)
(1)若線段MN=9厘米,E是線段MN上的三等分點,那么線段ME為幾厘米?
(2)在∠MON中,射線OA是∠MON的三等分線,OB是∠MOA的三等分線,設(shè)∠MOB=x,畫出圖形,并用含x的代數(shù)式表示∠MON.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)“三等分角”是數(shù)學(xué)史上一個著名問題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細(xì)體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說明)
精英家教網(wǎng)
(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
①設(shè)P(a,
1
a
)、R(b,
1
b
),求直線OM對應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=
1
3
∠AOB.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把三角形形狀的紙片放在方框紙上,使其每一個頂點都在格點上,如圖1所示(方格邊長均為1).對這個三角形進剪切、拼接后,可以得到一個平行四邊形,如圖2中陰影部分所示.
剪切、拼接的方案如下:如圖2,取BC的中點M,連AM.剪下△AMC后,沿直線BC翻折,所得圖形稱為△DMC;再把△DMC沿射線CA方向平移線段CA的長度后,可得到平行四邊形AEBM.
我們約定:剪切、拼接 時,紙片的每一部分都要被用到,而且不得用所給紙片以外的紙片.

(1)請你采用不同于圖2的剪切、拼接方案,也得到一個平行四邊形,并說明你的剪切、拼接方案,同時在圖3中用陰影表示出你得到的平行四邊形;
(2)對這個三角形進行剪切、拼接后,也可以得到一梯形.試在圖4中,用陰影表示出你得到的梯形(不必說明剪切、拼接方案,但必須保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:活學(xué)巧練  七年級數(shù)學(xué)上 題型:022

如圖,共有________條直線,它們是________;圖中共有________條射線,其中可以用圖中的字母表示的射線有________條;圖中共有________條線段,其中以B為一個端點的線段是________________.

查看答案和解析>>

同步練習(xí)冊答案