分析 (1)如圖1,根據(jù)角平分線性質(zhì)得EG=EF,再由∠GEF=∠G′EF′得到∠GEG′=∠FEF′,則可根據(jù)“ASA”證明△EGG′≌△EFF′,所以EG′=EF′,于是可判斷EF′:EG′的值為定值;
(2)過E點(diǎn)作EG′⊥CA于G′,EF′⊥CB于F′,如圖2,由點(diǎn)E為定點(diǎn)得到EF′:EG′的值不變,加上EF:EG的值不變,所以可判斷當(dāng)G點(diǎn)旋轉(zhuǎn)到于G′重合時(shí),點(diǎn)F與F′重合,則∠GEF=∠G′EF′,然后利用四邊形內(nèi)角和得∠G′EF′+∠C=180°,所以∠GEF+∠C=180°.
解答 解:(1)EF′:EG′的值不變化.理由如下:
如圖1,∵CE為角平分線,EG⊥CA,EF⊥CB,
∴EG=EF,
∵∠GEF=∠G′EF′,
∴∠GEF-∠G′EF=∠G′EF′-∠G′EF,
即∠GEG′=∠FEF′,
在△EGG′和△EFF′中,
$\left\{\begin{array}{l}{∠GEG′=∠FEF′}\\{EG=EF}\\{∠EGG′=∠EFF′}\end{array}\right.$,
∴△EGG′≌△EFF′,
∴EG′=EF′,
∴EF′:EG′=1,即EF′:EG′的值為定值;
(2)∠GEF+∠C=180°.理由如下:
過E點(diǎn)作EG′⊥CA于G′,EF′⊥CB于F′,如圖2,
∵點(diǎn)E為定點(diǎn),
∴EF′:EG′的值不變,
而EF:EG的值不變,
所以當(dāng)G點(diǎn)旋轉(zhuǎn)到于G′重合時(shí),點(diǎn)F與F′重合,
∴∠GEF=∠G′EF′,
∵∠G′EF′+∠C=360°-90°-90°=180°,
∴∠GEF+∠C=180°.
點(diǎn)評(píng) 本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.解決(2)小題的關(guān)鍵是作EG′⊥CA于G′,EF′⊥CB于F′,說明∠GEF=∠G′EF′.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2,3,5 | B. | 4,5,6 | C. | 11,12,15 | D. | 8,15,17 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
班級(jí) | 參加人數(shù) | 中位數(shù) | 方差 | 平均分 |
(3)班 | 50 | 120 | 103 | 122 |
(5)班 | 48 | 121 | 201 | 122 |
A. | ①②③ | B. | ①② | C. | ①③ | D. | ②③ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com