【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),記頂點(diǎn)都是整點(diǎn)的三角形為整點(diǎn)三角形.如圖,已知整點(diǎn)A(2,3),B(4,4),請(qǐng)?jiān)谒o網(wǎng)格區(qū)域(含邊界)上按要求畫整點(diǎn)三角形.
(1)在圖1中畫一個(gè)△PAB,使點(diǎn)P的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo);

(2)在圖2中畫一個(gè)△PAB,使點(diǎn)P,B橫坐標(biāo)的平方和等于它們縱坐標(biāo)和的4倍.

【答案】
(1)

解:設(shè)P(x,y),由題意x+y=2,

∴P(2,0)或(1,1)或(0,2);

(0,2)與A、B共線,不能構(gòu)成三角形所以舍棄,

∴△PAB如圖所示.


(2)

解:設(shè)P(x,y),由題意x2+42=4(4+y),

整數(shù)解為(2,1)等,△PAB如圖所示.


【解析】(1)設(shè)P(x,y),由題意x+y=2,求出整數(shù)解即可解決問題;(2)設(shè)P(x,y),由題意x2+42=4(4+y),求出整數(shù)解即可解決問題;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,ABC的外角∠ABD的平分線與∠ACB的平分線交于點(diǎn)O,MN過點(diǎn)O,且MNBC,分別交AB、AC于點(diǎn)MN

求證:(1)MO=MB;(2)MN=CNBM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用水,某市居民生活用水按階梯式水價(jià)計(jì)費(fèi).如表所 示是該市居民一戶一表生活用水及提示計(jì)費(fèi)價(jià)格表的部分信息:

自來水銷售價(jià)格

污水處理價(jià)格

每戶每月用水量

單價(jià):元/

單價(jià):元/

17 噸以下

a

0.80

超過 17 噸但不超過 30

噸的部分

b

0.80

超過 30 噸的部分

6.00

0.80

(說明:每戶產(chǎn)生的污水量等于該戶自來水用水量;水費(fèi)自來水費(fèi)用 污水處理費(fèi)用)

已知小明家 2017 5 月份用水 20 噸,交水費(fèi) 66 元;6 月份用水 25 噸交水費(fèi)91;

(1)a b 的值;

(2)為了節(jié)約開支,小明家計(jì)劃把 7 月份的水費(fèi)控制在不超過家庭月收入的2% .若小明家的月收入為 9200 元,則小明家 7 月份最多能用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,三角形ABC的頂點(diǎn)坐標(biāo)分別是A(0,0),B(6,0),C(5,5).

(1)求三角形ABC的面積;

(2)如果三角形ABC的三個(gè)頂點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)增加3個(gè)單位長度,得到三角形A1B1C1,試在圖中畫出三角形A1B1C1,并寫出點(diǎn)A1,B1,C1的坐標(biāo);

(3)(2)中三角形A1B1C1與三角形ABC的大小、形狀有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,A=20°,AB上一點(diǎn)D,且AD=BC,過點(diǎn)DDEBCDE=AB,連接EC,則∠DCE的度數(shù)為(

A. 80° B. 70° C. 60° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 與直線 相交于點(diǎn)P(1,b)

(1)求b,m的值
(2)垂直于x軸的直線 與直線 , 分別相交于C,D,若線段CD長為2,求a的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等邊OAB的頂點(diǎn)Ax軸的負(fù)半軸上,點(diǎn)B(a,b)在第二象限內(nèi),且a,b滿足.點(diǎn)Py軸上的一個(gè)動(dòng)點(diǎn),以PA為邊作等邊PAC,直線BCx軸于點(diǎn)M,交y軸于點(diǎn)D.

(1)求點(diǎn)A的坐標(biāo);

(2)如圖2,當(dāng)點(diǎn)Py軸正半軸上時(shí),求點(diǎn)M的坐標(biāo);

(3)如圖3,當(dāng)點(diǎn)Py軸負(fù)半軸上時(shí),求出OP,CD,AD滿足的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( )

A. 平面內(nèi),沒有公共點(diǎn)的兩條線段平行

B. 平面內(nèi),沒有公共點(diǎn)的兩條射線平行

C. 沒有公共點(diǎn)的兩條直線互相平行

D. 互相平行的兩條直線沒有公共點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點(diǎn)D和M,反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)D,與BC的交點(diǎn)為N.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)若點(diǎn)P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案