如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,D為OC的中點(diǎn),直線AD交拋物線于點(diǎn)E(2,6),且△ABE與△ABC的面積之比為3:2.
(1)求這條拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)連接BD,試判斷BD與AD的位置關(guān)系,并說明理由;
(3)連接BC交直線AD于點(diǎn)M,在直線AD上,是否存在這樣的點(diǎn)N(不與點(diǎn)M重合),使得以A、B、N為頂點(diǎn)的三角形與△ABM相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

解:(1)根據(jù)△ABE與△ABC的面積之比為3:2及E(2,6),可得C(0,4).
∴D(0,2).
由D(0,2)、E(2,6)可得直線AD所對(duì)應(yīng)的函數(shù)關(guān)系式為y=2x+2.
當(dāng)y=0時(shí),2x+2=0,
解得x=-1.
∴A(-1,0).
由A(-1,0)、C(0,4)、E(2,6)求得拋物線對(duì)應(yīng)的函數(shù)關(guān)系式為y=-x2+3x+4.

(2)BD⊥AD.
求得B(4,0),通過相似或勾股定理逆定理證得∠BDA=90°,
即BD⊥AD.

(3)法1:求得M(),AM=
由△ANB∽△ABM,得=,即AB2=AM•AN,
∴52=•AN,
解得AN=3
從而求得N(2,6).
法2:由OB=OC=4及∠BOC=90°得∠ABC=45°.
由BD⊥AD及BD=DE=2得∠AEB=45°.
∴△AEB∽△ABM,即點(diǎn)E符合條件,
∴N(2,6).
分析:(1)根據(jù)△ABE與△ABC的面積之比為3:2,可得出OC與E點(diǎn)縱坐標(biāo)的比為3:2,因此C點(diǎn)的坐標(biāo)為(0,4).D點(diǎn)坐標(biāo)為(0,2).然后可求出直線AD的解析式,進(jìn)而可求出A點(diǎn)坐標(biāo).根據(jù)A,C,E三點(diǎn)坐標(biāo)即可求出拋物線的解析式;
(2)應(yīng)該是垂直關(guān)系.可根據(jù)(1)中得出的拋物線的解析式求出B點(diǎn)的坐標(biāo),然后通過證△ABD和△ADO相似即可得出∠ADB=90°,也可利用勾股定理來求證,答案不唯一;
(3)由于以A、B、N為頂點(diǎn)的三角形與△ABM相似,且M、N不重合,而這兩個(gè)三角形又有一個(gè)公共角,因此只有一種情況,即△ANB∽△ABM,可得出AN:AB=AB:AM,由此可求出AN的長(zhǎng),即可求出N點(diǎn)的坐標(biāo).
(也可通過證△AEB∽△ABM,得出E,N重合,由此可求出N點(diǎn)的坐標(biāo)).
點(diǎn)評(píng):考查二次函數(shù)解析式的確定、圖形的面積求法、函數(shù)圖象交點(diǎn)等知識(shí)及綜合應(yīng)用知識(shí)、解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長(zhǎng)度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案