【題目】已知,如圖雙曲線(x>0)與直線EF交于點(diǎn)A,點(diǎn)B,且AE=AB=BF,連結(jié)AO,BO,它們分別與雙曲線(x>0)交于點(diǎn)C,點(diǎn)D,則:
(1)AB與CD的位置關(guān)系是__________;
(2)四邊形ABDC的面積為__________.
【答案】(1)AB∥CD;(2).
【解析】
如圖,過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)D作DH⊥x軸于點(diǎn)H,過點(diǎn)B作BN⊥x軸于點(diǎn)N,即可得AM∥DH∥BN∥y軸,設(shè)點(diǎn)A的坐標(biāo)為(m, ),由AE=AB=BF,可得OM=MN=BN,所以點(diǎn)B的坐標(biāo)為(2m,),所以S△OAB=S△OAM+S梯形AMNB-S△OBN=2+ ×(+)×(2m-m)-2=3,因?yàn)?/span>DH∥BN,可得△ODH∽△OBN,根據(jù)相似三角形的性質(zhì)可得,根據(jù)反比例函數(shù)k的幾何意義可得DHOH=2,BNON=4,所以()2= = ,同理可得()2= ,即=,所以AB∥CD ;由=,∠COD=∠AOB,可得△COD∽△AOB,由相似三角形的性質(zhì)可得 ,所以S△COD= ,即可得S四邊形ABDC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩車分別以各自的速度勻速從地駛向地,甲車比乙車早出發(fā),并且甲車途中休息了,如圖是甲、乙兩車行駛的路程與時(shí)間的函數(shù)圖象.
(1)求圖中的值及、兩地的距離;
(2)求出甲車行駛路程與時(shí)間的函數(shù)解析式,并寫出相應(yīng)的的取值范圍;
(3)小明說:乙車行駛路程與時(shí)間的函數(shù)解析式為.問:①小明的說法對嗎?簡要說明理由;②當(dāng)乙車行駛多長時(shí)間時(shí),兩車恰好相距?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC⊥BC,垂足為C,AC=4,BC=3,將線段AC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°,得到線段AD,連接DC,DB.
(1)求線段CD的長;
(2)求線段DB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△A′B′C是兩個(gè)完全重合的直角三角板,∠B=30°,斜邊長為10cm.三角板A′B′C繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)A′落在AB邊上時(shí),CA′旋轉(zhuǎn)所構(gòu)成的扇形的弧長為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),∠OAB=30°,若點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過點(diǎn)B的反比例函數(shù)解析式為( 。
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是雙曲線在第一象限分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊三角形ABC,點(diǎn)C在第四象限內(nèi),且隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也在不斷變化,但點(diǎn)C始終在雙曲線上運(yùn)動(dòng),則k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是射線y=(x≥0)上一點(diǎn),過點(diǎn)A作AB⊥x軸于點(diǎn)B,以AB為邊在其右側(cè)作正方形ABCD,過點(diǎn)A的雙曲線y=交CD邊于點(diǎn)E,則的值為( 。
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(a,﹣)在直線y=﹣上,AB∥y軸,且點(diǎn)B的縱坐標(biāo)為1,雙曲線y=經(jīng)過點(diǎn)B.
(1)求a的值及雙曲線y=的解析式;
(2)經(jīng)過點(diǎn)B的直線與雙曲線y=的另一個(gè)交點(diǎn)為點(diǎn)C,且△ABC的面積為.
①求直線BC的解析式;
②過點(diǎn)B作BD∥x軸交直線y=﹣于點(diǎn)D,點(diǎn)P是直線BC上的一個(gè)動(dòng)點(diǎn).若將△BDP以它的一邊為對稱軸進(jìn)行翻折,翻折前后的兩個(gè)三角形所組成的四邊形為正方形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com