【題目】揚(yáng)州市“五個一百工程”在各校普遍開展,為了了解某校學(xué)生每天課外閱讀所用的時間情況,從該校學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,并將結(jié)果繪制成如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

根據(jù)以上信息,請回答下列問題:

(1)表中a= b=

(2)請補(bǔ)全頻數(shù)分布直方圖;

(3)若該校有學(xué)生1200人,試估計該校學(xué)生每天閱讀時間超過1小時的人數(shù).

【答案】(1)1200.1;(2)補(bǔ)全頻數(shù)分布直方圖見解析;(3)該校學(xué)生每天閱讀時間超過1小時的人數(shù)為600人.

【解析】

(1)根據(jù)閱讀時間在0.5<t1范圍的頻數(shù)與頻率可求得a的值,繼而用12除以a即可求得b的值;

(2)求出閱讀時間在1<t1.5范圍的人數(shù),即可補(bǔ)全直方圖;

(3)1200乘以閱讀時間超過1小時的頻率即可求得答案.

(1)36÷0.3=120(),總共120人,

a=120,

B=12÷120=0.1,

故答案為:1200.1;

(2)0.4×120=48(),

補(bǔ)全直方圖如圖所示:

(3)1200×(0.4+0.1)=600人,

答:該校學(xué)生每天閱讀時間超過1小時的人數(shù)為600.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC為矩形ABCD的對角線,將邊AB沿AE折疊,使點B落在AC上的點M處,將邊CD沿CF折疊,使點D落在AC上的點N處.

1)求證:四邊形AECF是平行四邊形;

2)當(dāng)∠BAE為多少度時,四邊形AECF是菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對飲水品質(zhì)的需求越來越高.孝感市槐蔭公司根據(jù)市場需求代理、兩種型號的凈水器,每臺型凈水器比每臺型凈水器進(jìn)價多200元,用5萬元購進(jìn)型凈水器與用4.5萬元購進(jìn)型凈水器的數(shù)量相等.

(1)求每臺型、型凈水器的進(jìn)價各是多少元;

(2)槐蔭公司計劃購進(jìn)兩種型號的凈水器共50臺進(jìn)行試銷,其中型凈水器為臺,購買資金不超過9.8萬元.試銷時型凈水器每臺售價2500元,型凈水器每臺售價2180元.槐蔭公司決定從銷售型凈水器的利潤中按每臺捐獻(xiàn)元作為公司幫扶貧困村飲水改造資金,設(shè)槐蔭公司售完50臺凈水器并捐獻(xiàn)扶貧資金后獲得的利潤為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點.如圖,5×5正方形方格紙圖中,點A,B都在格點處.

(1)請在圖中作等腰△ABC,使其底邊AC2,且點C為格點;

(2)(1)的條件下,作出平行四邊形ABDC,且D為格點,并直接寫出平行四邊形ABDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對幾何命題進(jìn)行逆向思考是幾何研究中的重要策略,我們知道,等腰三角形兩腰上的高 線相等,那么等腰三角形兩腰上的中線,兩底角的角平分線也分別相等嗎?它們的逆命 題會正確嗎?

1)請判斷下列命題的真假,并在相應(yīng)命題后面的括號內(nèi)填上

①等腰三角形兩腰上的中線相等  ;

②等腰三角形兩底角的角平分線相等  ;

③有兩條角平分線相等的三角形是等腰三角形  ;

2)請寫出等腰三角形兩腰上的中線相等的逆命題,如果逆命題為真,請畫出圖形,寫出已知、求證并進(jìn)行證明,如果不是,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題呈現(xiàn)

如圖,四邊形ABCD是矩形,AB=20,BC=10,以CD為一邊向矩形外部作等腰直角△GDC,∠G=90°,點M在線段AB上,且AM=a,點P沿折線AD-DG運動,點Q沿折線BC-CG運動(與點G不重合),在運動過程中始終保持線段PQ//AB.設(shè)PQAB之間的距離為x.

1)若a=12.①如圖1,當(dāng)點P在線段AD上時,若四邊形AMQP的面積為48,則x的值為_________

②在運動過程中,求四邊形AMQP的最大面積;

2)如圖2,若點P在線段DG上時,要使四邊形AMQP的面積始終不小于50,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,點D,F(xiàn)分別是AC,AB的中點,CEDB,BEDC.

(1)求證:四邊形DBEC是菱形;

(2)若AD=3,DF=1,求四邊形DBEC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年5月的第二個星期日即為母親節(jié),父母恩深重,恩憐無歇時,許多市民喜歡在母親節(jié)為母親送鮮花,感恩母親,祝福母親. 節(jié)日前夕,某花店采購了一批鮮花禮盒,成本價為30元每件,分析上一年母親節(jié)的鮮花禮盒銷售情況,得到了如下數(shù)據(jù),同時發(fā)現(xiàn)每天的銷售量(件)是銷售單價(元/件)的一次函數(shù).

銷售單價 (/)

30

40

50

60

每天銷售量 ()

350

300

250

200

(1)求出的函數(shù)關(guān)系;

(2)物價局要求,銷售該鮮花禮盒獲得的利潤不得高于100﹪:

當(dāng)銷售單價取何值時,該花店銷售鮮花禮盒每天獲得的利潤為5000?(利潤=銷售總價-成本價);

試確定銷售單價取何值時,花店銷該鮮花禮盒每天獲得的利潤(元)最大?并求出花店銷該鮮花禮盒每天獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于,兩點,與軸交于點,拋物線的對稱軸與軸交于點,頂點坐標(biāo)為.

1)求拋物線的表達(dá)式和頂點的坐標(biāo);

2)如圖1,點為拋物線上一點,點不與點重合,當(dāng)時,過點軸,交拋物線的對稱軸于點,作軸于點H,得到矩形,求矩形的周長的最大值;

3)如圖2,點為拋物線對稱軸上一點,是否存在點,使以點、為頂點的三角形是直角三角形?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案