【題目】如圖,一段拋物線:y=xx2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;將C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;如此進(jìn)行下去,直至得到C2018,若點P4035,m)在第2018段拋物線C2018上,則m的值是( )

A.1B.1C.0D.4035

【答案】B

【解析】

根據(jù)題意可以發(fā)現(xiàn)題目中各個點的變化規(guī)律,從而可以求得m的值,本題得以解決.

y=-xx-2)(0≤x≤2),

∴配方可得y=-x-12+10≤x≤2),

∴頂點坐標(biāo)為(11),

A1坐標(biāo)為(2,0

C2C1旋轉(zhuǎn)得到,

OA1=A1A2,即C2頂點坐標(biāo)為(3,-1),A24,0);

C2繞點A2旋轉(zhuǎn)180°C3,交x軸于點A3;

P4035,m)在拋物線C2018上,

n=2018是偶數(shù),

P4035,m)在x軸的下方,m=-1,

∴當(dāng)x=4035時,m=-1

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是矩形,A、C分別在y軸、x軸上,且OA6cmOC8cm,點P從點A開始以2cm/s的速度向B運(yùn)動,點Q從點B開始以1cm/s的速度向C運(yùn)動,設(shè)運(yùn)動時間為t

1)如圖(1),當(dāng)t為何值時,BPQ的面積為4cm2?

2)當(dāng)t為何值時,以B、PQ為頂點的三角形與ABC相似?

3)如圖(2),在運(yùn)動過程中的某一時刻,反比例函數(shù)y的圖象恰好同時經(jīng)過P、Q兩點,求這個反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠A=30°,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是( 。

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,每個小方格都是邊長為1個單位的小正方形,點A、B、C都是格點(每個小方格的頂點叫格點),其中A1,8),B3,8),C47).

1ABC外接圓圓心的坐標(biāo)為   ,半徑是   ;

2)已知ABCDEF(點DE、F都是格點)成位似圖形,位似中心M的坐標(biāo)是   ,ABCDEF位似比為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB6cmAD10cm,點E、F在矩形ABCD的邊ABAD上運(yùn)動,將AEF沿EF折疊,使點A′BC邊上,當(dāng)折痕EF移動時,點A′BC邊上也隨之移動.則A′C的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備采購一批茶藝耗材和陶藝耗材.經(jīng)查詢,如果按照標(biāo)價購買兩種耗材,當(dāng)購買茶藝耗材的數(shù)量是陶藝耗材數(shù)量的2倍時,購買茶藝耗材共需要18000元,購買陶藝耗材共需要12000元,且一套陶藝耗材單價比一套茶藝耗材單價貴150.

1)求一套茶藝耗材、一套陶藝耗材的標(biāo)價分別是多少元?

2)學(xué)校計劃購買相同數(shù)量的茶藝耗材和陶藝耗材.商家告知,因為周年慶,茶藝耗材的單價在標(biāo)價的基礎(chǔ)上降價2元,陶藝素材的單價在標(biāo)價的基礎(chǔ)降價150元,該校決定增加采購數(shù)量,實際購買茶藝素材和陶藝素材的數(shù)量在原計劃基礎(chǔ)上分別增加了2.5%,結(jié)果在結(jié)算時發(fā)現(xiàn),兩種耗材的總價相等,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線x軸交于A、B兩點,與y軸交于點C,對稱軸為直線x=2,點A的坐標(biāo)為(1,0).

1)求該拋物線的表達(dá)式及頂點坐標(biāo);

2)點P為拋物線上一點(不與點A重合),聯(lián)結(jié)PC.當(dāng)∠PCB=ACB時,求點P的坐標(biāo);

3)在(2)的條件下,將拋物線沿平行于軸的方向向下平移,平移后的拋物線的頂點為點D,點P關(guān)于x軸的對應(yīng)點為點Q,當(dāng)ODDQ時,求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cy軸于點A(04),交x軸于點B(4,0),點P是拋物線上一動點,試過點Px軸的垂線1,再過點A1的垂線,垂足為Q,連接AP

(1)求拋物線的函數(shù)表達(dá)式和點C的坐標(biāo);

(2)若△AQP∽△AOC,求點P的橫坐標(biāo);

(3)如圖2,當(dāng)點P位于拋物線的對稱軸的右側(cè)時,若將△APQ沿AP對折,點Q的對應(yīng)點為點Q′,請直接寫出當(dāng)點Q′落在坐標(biāo)軸上時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx22x3x軸分別交于AB兩點(點A在點B的左邊),與y軸交于點C,頂點為D

1)如圖1,求BCD的面積;

2)如圖2P是拋物線BD段上一動點,連接CP并延長交x軸于E,連接BDPCF,當(dāng)CDF的面積與BEF的面積相等時,求點E和點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案