3.已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點.現(xiàn)將線段BA繞點B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點D.
(1)如圖1,若該拋物線經(jīng)過原點O,且a=-$\frac{1}{3}$. 
①求點D的坐標(biāo)及該拋物線的解析式;
②連結(jié)CD.問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標(biāo);若不存在,請說明理由;
(2)如圖2,若該拋物線y=ax2+bx+c(a≠0)經(jīng)過點E(1,1),點Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點的個數(shù)是4個,請直接寫出a的取值范圍.

分析 (1)①過點D作DF⊥x軸于點F,先通過三角形全等求得D的坐標(biāo),把D的坐標(biāo)和a=-$\frac{1}{3}$,c=0代入y=ax2+bx+c即可求得拋物線的解析式;
②先證得CD∥x軸,進而求得要使得∠POB與∠BCD互余,則必須∠POB=∠BAO,設(shè)P的坐標(biāo)為(x,-$\frac{1}{3}$x2+$\frac{4}{3}$x),分兩種情況討論即可求得;
(2)若符合條件的Q點的個數(shù)是4個,則當(dāng)a<0時,拋物線交于y軸的負(fù)半軸,當(dāng)a>0時,最小值得<-1,解不等式即可求得.

解答 解:(1)①過點D作DF⊥x軸于點F,如圖1,

∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,
∴∠DBF=∠BAO,
又∵∠AOB=∠BFD=90°,AB=BD,
在△AOB和△BFD中,
$\left\{\begin{array}{l}{∠DBF=∠BAO}\\{∠AOB=∠BFD}\\{AB=BD}\end{array}\right.$,
∴△AOB≌△BFD(AAS)
∴DF=BO=1,BF=AO=2,
∴D的坐標(biāo)是(3,1),
根據(jù)題意,得a=-$\frac{1}{3}$,c=0,且a×32+b×3+c=1,
∴b=$\frac{4}{3}$,
∴該拋物線的解析式為y=-$\frac{1}{3}$x2+$\frac{4}{3}$x;
②∵點A(0,2),B(1,0),點C為線段AB的中點,
∴C($\frac{1}{2}$,1),
∵C、D兩點的縱坐標(biāo)都為1,
∴CD∥x軸,
∴∠BCD=∠ABO
∴∠BAO與∠BCD互余,
要使得∠POB與∠BCD互余,則必須∠POB=∠BAO,
設(shè)P的坐標(biāo)為(x,-$\frac{1}{3}$x2+$\frac{4}{3}$x),
(Ⅰ)當(dāng)P在x軸的上方時,過P作PG⊥x軸于點G,如圖2,

則tan∠POB=tan∠BAO,即$\frac{PG}{OG}$=$\frac{BO}{AO}$,
∴$\frac{\frac{1}{3}{x}^{2}-\frac{4}{3}x}{x}$=$\frac{1}{2}$,解得x1=0(舍去),x2=$\frac{5}{2}$,
∴-$\frac{1}{3}$x2+$\frac{4}{3}$x=$\frac{5}{4}$,
∴P點的坐標(biāo)為($\frac{5}{2}$,$\frac{5}{4}$);
(Ⅱ)當(dāng)P在x軸的下方時,過P作PG⊥x軸于點G,如圖3,

則tan∠POB=tan∠BAO,即p$\frac{PG}{OG}=\frac{BO}{AO}$,
∴$\frac{\frac{1}{3}{x}^{2}-\frac{4}{3}x}{x}=\frac{1}{2}$,
解得x1=0(舍去),x2=$\frac{11}{2}$,
∴$-\frac{1}{3}$x2+$\frac{4}{3}$x=-$\frac{11}{4}$,
∴P點的坐標(biāo)為($\frac{11}{2}$,-$\frac{11}{4}$);
綜上,在拋物線上存在點P($\frac{5}{2}$,$\frac{5}{4}$)或($\frac{11}{2}$,-$\frac{11}{4}$),使得∠POB與∠BCD互余.
(2)如圖3,圖4,


∵D(3,1),E(1,1),
拋物線y=ax2+bx+c過點E、D,代入可得$\left\{\begin{array}{l}{a+b+c=1}\\{9a+3b+c=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{b=-4a}\\{c=1+3a}\end{array}\right.$,
所以y=ax2-4ax+3a+1.
分兩種情況:
①當(dāng)拋物線y=ax2+bx+c開口向下時,若滿足∠QOB與∠BCD互余且符合條件的Q點的個數(shù)是4個,則點Q在x軸的上、下方各有兩個,
(i)當(dāng)點Q在x軸的上方時,直線OQ與拋物線有兩個交點,滿足條件的Q有2個;
(ii)當(dāng)點Q在x軸的下方時,要使直線OQ與拋物線y=ax2+bx+c有兩個交點,拋物線y=ax2+bx+c與x軸的交點必須在x軸的正半軸上,與y軸的交點在y軸的負(fù)半軸,所以3a+1<0,解得a<-$\frac{1}{3}$;
②當(dāng)拋物線y=ax2+bx+c開口向上時,點Q在x軸的上、下方各有兩個,
(i)當(dāng)點Q在x軸的上方時,直線OQ與拋物線y=ax2+bx+c有兩個交點,符合條件的點Q有兩個;
(ii)當(dāng)點Q在x軸的下方時,要使直線OQ與拋物線y=ax2+bx+c有兩個交點,符合條件的點Q才兩個.
根據(jù)(2)可知,要使得∠QOB與∠BCD互余,則必須∠QOB=∠BAO,
∴tan∠QOB=tan∠BAO=$\frac{OB}{OA}$=$\frac{1}{2}$,此時直線OQ的斜率為-$\frac{1}{2}$,則直線OQ的解析式為y=-$\frac{1}{2}$x,要使直線OQ與拋物線y=ax2+bx+c有兩個交點,所以方程ax2-4ax+3a+1=-$\frac{1}{2}$x有兩個不相等的實數(shù)根,所以△=(-4a+$\frac{1}{2}$)2-4a(3a+1)>0,即4a2-8a+$\frac{1}{4}$>0,解得a>$\frac{4+\sqrt{15}}{4}$(a<$\frac{4-\sqrt{15}}{4}$舍去)
綜上所示,a的取值范圍為a<-$\frac{1}{3}$或a>$\frac{4+\sqrt{15}}{4}$.

點評 本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,正切函數(shù),最小值等,分類討論的思想是本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如圖,圖①是棱長為4cm的立方體,沿其相鄰三個面的對角線(虛線)裁掉一個角,得到如圖②的幾何體,則一只螞蟻沿著圖②幾何體的表面,從頂點A爬到頂點B的最短距離為(2$\sqrt{2}$+2$\sqrt{6}$)cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.計算:
(1)-12006-8(π-2)0+${(-\frac{1}{4})^{-2}}$×2-1
(2)(p-q)4÷(q-p)3•(p-q)2
(3)2(x32•x3-(3x33+(5x)2•x7
(4)${(\frac{2}{3})^{2000}}$×(1.5)1999×(-1)1999

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)y是x的一次函數(shù),且x=1時,y=1,x=2時,y=4.寫出y與x的函數(shù)表達(dá)式并畫出它的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.已知,兩數(shù)在數(shù)軸上的位置如圖所示,則化簡代數(shù)式|a+b|-|a-1|+|b+2|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.將直尺和直角三角板按如圖位置擺放,若∠1=25°,則∠2的度數(shù)是( 。
A.35°B.45°C.55°D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.計算:-22+($\frac{1}{4}$)-1-$\sqrt{3}$sin60°-($\sqrt{2012}$)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.計算:($\frac{1}{3}$)-2-2sin45°+(π-3.14)0+$\frac{1}{2}$$\sqrt{8}$+(-1)2016

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標(biāo)為(0,$-\frac{3}{2}$),點M是拋物線C2:y=mx2-2mx-3m(m<0)的頂點.
(1)求A、B兩點的坐標(biāo);
(2)當(dāng)△BDM為直角三角形時,求m的值.
(3)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案