【題目】如圖,OA的方向是北偏東15°,OB的方向是西偏北50°,OD是OB的反向延長線.
(1)若∠AOC=∠AOB,求OC的方向.
(2)在(1)問的條件下,作∠AOD的角平分線OE,求∠COE的度數(shù).
【答案】(1)OC的方向是北偏東70°;(2)作∠AOD的角平分線OE,見解析,∠COE=7.5°.
【解析】
(1)由題意先根據(jù)OB的方向是西偏北50°求出∠BOF的度數(shù),進(jìn)而求出∠FOC的度數(shù)即可;
(2)根據(jù)題意求出∠AOE的度數(shù),再根據(jù)角平分線的定義求出∠AOC的度數(shù),然后根據(jù)角的和差關(guān)系計算即可.
解:(1)∵OB的方向是西偏北50°,
∴∠BOF=90°﹣50°=40°,
∴∠AOB=40°+15°=55°,
∵∠AOC=∠AOB,
∴∠AOC=55°,
∴∠FOC=∠AOF+∠AOC=15°+55°=70°,
∴OC的方向是北偏東70°;
(2)由題意可知∠AOD=90°﹣15°+50°=125°,
作∠AOD的角平分線OE如下圖:
∵OE是∠AOD的角平分線,
∴,
∴∠COE=∠AOE﹣∠AOC=62.5°﹣55°=7.5°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,是過點的一條射線,,分別平分,.請回答下列問題:
(1)如圖①,如果是的平分線,求的度數(shù)是多少?
(2)如圖②,如果是內(nèi)部的任意一條射線,的度數(shù)有變化嗎?為什么?
(3)如圖③,如果是外部的任意一條射線,的度數(shù)能求出嗎?如果能求出,請寫出過程;如果不能求出,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y+1與x+2成正比例,且當(dāng)x=4時,y=-4.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)若點(a,2)和(2,b)均在(1)中函數(shù)圖像上,求a、b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面由※組成的圖案和算式,解答問題:
(1)請猜想____= ______;
(2)請猜想_________;
(3)請用上述規(guī)律計算:的值;
(4)請用上述規(guī)律計算: ______(直接寫答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知OC是∠AOB內(nèi)部的一條射線,M,N分別為OA,OC上的點,線段OM,ON同時分別以30°/s,10°/s的速度繞點O逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時間為t秒.
(1)如圖①,若∠AOB=120°,當(dāng)OM、ON逆時針旋轉(zhuǎn)到OM′、ON′處,
①若OM,ON旋轉(zhuǎn)時間t為2時,則∠BON′+∠COM′= °;
②若OM′平分∠AOC,ON′平分∠BOC,求∠M′ON′的值;
(2)如圖②,若∠AOB=4∠BOC,OM,ON分別在∠AOC,∠BOC內(nèi)部旋轉(zhuǎn)時,請猜想∠COM與∠BON的數(shù)量關(guān)系,并說明理由.
(3)若∠AOC=80°,OM,ON在旋轉(zhuǎn)的過程中,當(dāng)∠MON=20°,t= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探究:哪些特殊的角可以用一副三角板畫出?
在①,②,③,④中,小明同學(xué)利用一副三角板畫不出來的特殊角是_________;(填序號)
(2)在探究過程中,愛動腦筋的小明想起了圖形的運動方式有多種.如圖,他先用三角板畫出了直線,然后將一副三角板拼接在一起,其中角()的頂點與角()的頂點互相重合,且邊、都在直線上.固定三角板不動,將三角板繞點按順時針方向旋轉(zhuǎn)一個角度,當(dāng)邊與射線第一次重合時停止.
①當(dāng)平分時,求旋轉(zhuǎn)角度;
②是否存在?若存在,求旋轉(zhuǎn)角度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點M是邊BC上的一點(不與B、C重合),點N在CD邊的延長線上,且滿足∠MAN=90°,聯(lián)結(jié)MN、AC,N與邊AD交于點E.
(1)求證:AM=AN;
(2)如果∠CAD=2∠NAD,求證:AM2=ACAE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為打造美麗校園,小明、小紅為校園內(nèi)的一塊空地分別提供了如圖甲、乙的設(shè)計方案,其中陰影部分都用于綠化,圖甲空白區(qū)域修建一座雕像,圖乙空白區(qū)域修建石子小路.已知S甲表示圖甲中綠化的面積S乙表示圖乙中綠化的面積.
(1)S甲= (用含a,b的代數(shù)式表示);
(2)設(shè)k=,
①請用含a,b的代數(shù)式表示k并化簡;
②當(dāng)2S甲﹣S乙=a2時,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綜合與實踐課上,老師組織同學(xué)們以“矩形紙片的折疊”為主題開展數(shù)學(xué)活動.
(1)奮進(jìn)小組用圖1中的矩形紙片ABCD,按照如圖2所示的方式,將矩形紙片沿對角線AC折疊,使點B落在點處,則與重合部分的三角形的類型是________.
(2)勤學(xué)小組將圖2中的紙片展平,再次折疊,如圖3,使點A與點C重合,折痕為EF,然后展平,則以點A、F、C、E為頂點的四邊形是什么特殊四邊形?請說明理由.
(3)創(chuàng)新小組用圖4中的矩形紙片ABCD進(jìn)行操作,其中,,先沿對角線BD對折,點C落在點的位置,交AD于點G,再按照如圖5所示的方式折疊一次,使點D與點A重合,得折痕EN,EN交AD于點M.則EM的長為________cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com