【題目】如圖在矩形ABCD中,BC8,CD6,將BCD沿對(duì)角線(xiàn)BD翻折,點(diǎn)C落在點(diǎn)C處,BCAD于點(diǎn)E,則BDE的面積為( 。

A. B. C. 21D. 24

【答案】A

【解析】

先根據(jù)矩形的性質(zhì)得ABCD6,ADBC8,ADBC,再根據(jù)折疊的性質(zhì)得∠DBC=∠DBE,由ADBC得∠DBC=∠BDE,所以∠BDE=∠EBD,根據(jù)等腰三角形的判定得EBED,設(shè)EDx,則EBx,AE8x,在RtABE根據(jù)勾股定理得到62+8x2x2,求出x的值,然后根據(jù)三角形面積公式求解即可.

∵四邊形ABCD為矩形,

ABCD6,ADBC8ADBC,

∵矩形紙片ABCD沿對(duì)角線(xiàn)BD折疊,點(diǎn)C落在點(diǎn)E處,

∴∠DBC=∠DBE

ADBC,

∴∠DBC=∠BDE

∴∠BDE=∠EBD,

EBED,

設(shè)EDx,則EBx,AE8x,

RtABE中,∵AB2+AE2BE2,

62+8x2x2,

解得x,

DE,

∴△BDE的面積=ABDE×6×

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線(xiàn)的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG、DE.
n
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)角(0°< <360°)得到正方形OE’F’G’,如圖2.
①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG’是直角時(shí),求 的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF’長(zhǎng)的最大值和此時(shí) 的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B,C三名大學(xué)生競(jìng)選系學(xué)生會(huì)主席,他們的筆試成績(jī)和口試成績(jī)(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計(jì),如表和圖1:

競(jìng)選人

A

B

C

筆試

85

95

90

口試

80

85


(1)請(qǐng)將表和圖1中的空缺部分補(bǔ)充完整.
(2)競(jìng)選的最后一個(gè)程序是由本系的300名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖2(沒(méi)有棄權(quán)票,每名學(xué)生只能推薦一個(gè)),則B在扇形統(tǒng)計(jì)圖中所占的圓心角是度.
(3)若每票計(jì)1分,系里將筆試、口試、得票三項(xiàng)測(cè)試得分按4:3:3的比例確定個(gè)人成績(jī),請(qǐng)計(jì)算三位候選人的最后成績(jī),并根據(jù)成績(jī)判斷誰(shuí)能當(dāng)選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系中.

1)寫(xiě)出ABC各頂點(diǎn)的坐標(biāo).

2)把ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得A'B'C',在圖中畫(huà)出A'B'C',并寫(xiě)出A'、B'、C'的坐標(biāo).

3)求出

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從①,②,③三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論可以組成3個(gè)命題.

1)這三個(gè)命題中,真命題的個(gè)數(shù)為________

2)選擇一個(gè)真命題,并且證明.(要求寫(xiě)出每一步的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B兩地被池塘隔開(kāi),小明通過(guò)下列方法測(cè)出了A、B間的距離:先在AB外選一點(diǎn)C,然后測(cè)出AC,BC的中點(diǎn)M,N,并測(cè)量出MN的長(zhǎng)為6 m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動(dòng)的描述錯(cuò)誤的是

A. AB=12 m B. MNAB

C. CMNCAB D. CMMA=12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線(xiàn)交y軸于點(diǎn)A,交x軸于B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知C點(diǎn)坐標(biāo)為(6,0).

(1)求此拋物線(xiàn)的解析式;
(2)已知點(diǎn)P是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),且位于A,C兩點(diǎn)之間.問(wèn):當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAC的面積最大?求出△PAC的最大面積;
(3)連接AB,過(guò)點(diǎn)B作AB的垂線(xiàn)交拋物線(xiàn)于點(diǎn)D,以點(diǎn)C為圓心的圓與拋物線(xiàn)的對(duì)稱(chēng)軸l相切,先補(bǔ)全圖形,再判斷直線(xiàn)BD與⊙C的位置關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AE平分∠BACBD=DC,DEBC,EMAB.若AB=9,AC=5,則AM的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知 A0,a),Bb,0),Cbc)三點(diǎn),其中a,bc滿(mǎn)足關(guān)系式:

1)求A,B,C三點(diǎn)的坐標(biāo);

2)如果在第二象限內(nèi)有一點(diǎn)Pm,),若四邊形ABOP的面積與三角形ABC 的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案