【題目】閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.
探究一:如圖1.在△ABC中,已知O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過分析發(fā)現(xiàn).理由如下:
∵BO和CO分別是∠ABC與∠ACB的平分線,
∴,;
∴,
∴
(1)探究二:如圖2中,已知O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?并說明理由.
(2)探究二:如圖3中,已知O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?
【答案】(1),理由見解析;(2).
【解析】
(1)根據(jù)角平分線的定義可得∠OBC=∠ABC,∠OCD=∠ACD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和和角平分線的定義可得∠OCD=∠ACD=∠A+∠OBD,∠BOC=∠OCD-∠OBC,然后整理即可得解;
(2)根據(jù)三角形的外角性質(zhì)以及角平分線的定義表示出∠OBC和∠OCB,再根據(jù)三角形的內(nèi)角和定理解答;
(1),理由如下:
∵BO和CO分別是與的平分線,
∴,,
又∵是的一個(gè)外角,
∴,
∵是的一個(gè)外角,
∴
即
(2)∵BO與CO分別是∠CBD與∠BCE的平分線,
∴∠OBC=∠CBD,∠OCB=∠BCE
又∵∠CBD與∠BCE都是△ABC的外角,
∴∠CBD=∠A+∠ACB,∠BCE=∠A+∠ABC,
∴∠OBC=∠CBD=(∠A+∠ACB),∠OCB=∠BCE=(∠A+∠ABC),
∴∠BOC=180°-(∠OBC+∠OCB)
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為節(jié)約能源,優(yōu)化電力資源配置,提高電力供應(yīng)的整體效益,國家實(shí)行了錯(cuò)峰用電.某地區(qū)的居民用電,按白天時(shí)段和晚間時(shí)段規(guī)定了不同的單價(jià).某戶5月份白天時(shí)段用電量比晚間時(shí)段用電量多,6月份白天時(shí)段用電量比5月份白天時(shí)段用電量少,結(jié)果6月份的總用電量比5月份的總用電量多,但6月份的電費(fèi)卻比5月份的電費(fèi)少,則該地區(qū)晚間時(shí)段居民用電的單價(jià)比白天時(shí)段的單價(jià)低的百分?jǐn)?shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=90°,CD⊥AB,垂足為D,則下面的結(jié)論中正確的是( )
①BC與AC互相垂直;②AC與CD互相垂直;③點(diǎn)A到BC的垂線段是線段BC;④點(diǎn)C到AB的垂線段是線段CD;③線段BC是點(diǎn)B到AC的距離;⑥線段AC的長度是點(diǎn)A到BC的距離.
A.①④③⑥B.①④⑥C.②③D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】省射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加全國比賽,對
他們進(jìn)行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根據(jù)表格中的數(shù)據(jù),計(jì)算出甲的平均成績是 環(huán),乙的平均成績是 環(huán);
(2)分別計(jì)算甲、乙六次測試成績的方差;
(3)根據(jù)(1)、(2)計(jì)算的結(jié)果,你認(rèn)為推薦誰參加全國比賽更合適,請說明理由.
(計(jì)算方差的公式:s2=[])
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的頂點(diǎn)坐標(biāo)為A(—5,1),B(—1,1), C(—1,6),D(—5,4),請作出四邊形ABCD關(guān)于x軸及y軸的對稱圖形,并寫出坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國古代算法的扛鼎之作!毒耪滤阈g(shù)》中記載:“今有五省、六燕,集稱之衡,雀俱重,燕俱輕,一雀一燕交而處,衡適平。并燕、雀重一斤。問燕,雀一枚各重幾何?”譯文:“今有只雀、只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.只雀、只燕重量為斤。問雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次知識(shí)競賽中,甲、乙兩人進(jìn)入了“必答題”環(huán)節(jié).規(guī)則是:兩人輪流答題,每人都要回答20個(gè)題,每個(gè)題回答正確得a分,回答錯(cuò)誤或放棄回答扣b分.當(dāng)甲、乙兩人恰好都答完12個(gè)題時(shí),甲答對了8個(gè)題,得分為64分;乙答對了9個(gè)題,得分為78分.
(1)求a和b的值;
(2)規(guī)定此環(huán)節(jié)得分不低于120分能晉級(jí),甲在剩下的比賽中至少還要答對多少個(gè)題才能順利晉級(jí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長均為1,線段的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)如圖①,點(diǎn)在小正方形格點(diǎn)上,在圖①中作出點(diǎn)關(guān)于直線的對稱點(diǎn),連接、、、,并直接寫出四邊形的周長;
(2)在圖②中畫出一個(gè)以線段為一條對角線、面積為15的菱形,且點(diǎn)和點(diǎn)均在小正方形的頂點(diǎn)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=∠2,AB=AD,點(diǎn)E在邊BC上,∠C=∠AED,AB與DE交于點(diǎn)O.
(1)求證:△ABC≌△ADE;
(2)當(dāng)∠1=40°時(shí),求∠BED的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com