【題目】若一個(gè)多邊形的內(nèi)角和等于其外角和的2倍,則它是邊形.
【答案】六
【解析】解:設(shè)這個(gè)多邊形是n邊形,根據(jù)題意得,
(n﹣2)180°=2×360°,
解得n=6.
所以答案是:六.
【考點(diǎn)精析】關(guān)于本題考查的多邊形內(nèi)角與外角,需要了解多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次數(shù)學(xué)測(cè)試后,某班50名學(xué)生的成績(jī)被分為5組,第1~4組的頻數(shù)分別為12、10、15、8,則第5組的頻率是( 。
A. 0.1 B. 0.2 C. 0.3 D. 0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列定理中,沒(méi)有逆定理的是 ( )
A.三邊對(duì)應(yīng)相等的兩個(gè)三角形全等B.中垂線(xiàn)上的點(diǎn)到線(xiàn)段兩端的距離相等
C.全等三角形的對(duì)應(yīng)角相等D.直角三角形斜邊上的中線(xiàn)等于斜邊的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)軸上表示–1和3的兩點(diǎn)分別是點(diǎn)A和點(diǎn)B,則點(diǎn)A和點(diǎn)B之間的距離是
A.–4 B.–2 C.2 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱(chēng)p×q是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解成1×12,2×6或3×4,因?yàn)?2-1>6-2>4-3,所有3×4是最佳分解,所以F(12)=.
(1)如果一個(gè)正整數(shù)a是另外一個(gè)正整數(shù)b的平方,我們稱(chēng)正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1.
(2)如果一個(gè)兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們稱(chēng)這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組數(shù)中,可以構(gòu)成直角三角形的一組是( ).
A.3,5,6B.2,3,4C.6,7,9D.1.5,2,2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題的個(gè)數(shù)為( )
①平行四邊形的對(duì)角線(xiàn)相等;②有兩組對(duì)邊分別相等的四邊形是平行四邊形;③連結(jié)一個(gè)任意四邊形四邊的中點(diǎn)所構(gòu)成的四邊形一定是平行四邊形;④十邊形內(nèi)角和為1800°.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們新定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形,那么“等邊三角形一定是奇異三角形”是___________命題.(填“真”或“假”)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com