精英家教網 > 初中數學 > 題目詳情

已知:菱形ABCD中,E是AB的中點,且DE⊥AB,AB=a,
(1)∠ABC的度數為______度;
(2)對角線AC的長為______;
(3)菱形ABCD的面積為______.

解:(1)根據已知條件和菱形的性質可得DE垂直且平分AB,所以△ABD是等邊三角形,即∠ABD=60°,菱形的對角線平分一組對角,所以∠ABC的度數為2×60°=120°;
(2)由以上所求結果可得BD=AB=a,則=a2-,即AC=a;
(3)菱形ABCD的面積=×a×=a2
分析:(1)根據已知可得到△ABD是等邊三角形,從而得到∠ABD=60°,則可得到)∠ABC的度數;
(2)根據勾股定理可求得AC的長.
(3)根據菱形的面積等于兩對角線乘積的一半可求得菱形的面積.
點評:本題考查的是菱形的面積求法及菱形性質的綜合.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:菱形ABCD中,對角線AC=16cm,BD=12cm,BE⊥CD于點E,則BE的長為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知,菱形ABCD中E是AB的中點,F(xiàn)是CD的四等分點,即CF:FD=1:3,則S四邊形EBCF:S菱形ABCD=(  )
A、1:6B、2:7C、3:8D、5:12

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:菱形ABCD中,E是AB的中點,且DE⊥AB,AB=a,
(1)∠ABC的度數為
 
度;
(2)對角線AC的長為
 
;
(3)菱形ABCD的面積為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:菱形ABCD中,對角線AC與BD相交于點O,OE∥DC交BC于點E,AD=6cm,則OE的長為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:菱形ABCD中,對角線AC=16cm,BD=12cm,DE⊥BC于點E,求菱形ABCD的面積和BE的長
96cm2,
48
5
cm
96cm2,
48
5
cm

查看答案和解析>>

同步練習冊答案