【題目】如圖,矩形的頂點,分別在菱形的邊上,頂點,在菱形的對角線上,相交于點


1)求證:

2)若中點,,求菱形的周長.

【答案】1)見解析;(28

【解析】

1)根據(jù)矩形的性質(zhì)得到EH=FGEHFG,得到∠GFH=EHF,求得∠BFG=DHE,根據(jù)菱形的性質(zhì)得到ADBC,得到∠GBF=EDH,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
2)連接EG,根據(jù)菱形的性質(zhì)得到AD=BCADBC,求得AE=BG,AEBG,得到四邊形ABGE是平行四邊形,得到AB=EG,于是得到結(jié)論.

1)∵四邊形EFGH是矩形,
EH=FG,EHFG,
∴∠GFH=EHF
∵∠BFG=180°-GFH,∠DHE=180°-EHF,
∴∠BFG=DHE,
∵四邊形ABCD是菱形,
ADBC,
∴∠GBF=EDH,
∴△BGF≌△DEHAAS),
BG=DE;
2)∵四邊形ABCD是菱形,
AD=BCADBC,
EAD中點,
AE=ED
BG=DE,
AE=BG,AEBG,
∴四邊形ABGE是平行四邊形,
AB=EG,
EG=FH=2,
AB=2
∴菱形ABCD的周長=8

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,ABAC20tanB,點DBC邊上的動點(D不與點B,C重合).以D為頂點作∠ADE∠B,射線DEAC邊于點E,過點AAF⊥AD交射線DE于點F,連接CF

1)求證:△ABD∽△DCE;

2)當DE∥AB時(如圖2),求AE的長;

3)點DBC邊上運動的過程中,是否存在某個位置,使得DFCF?若存在,求出此時BD的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,是銳角,過兩點以為半徑作

1)如圖,對角線交于點,若,且過點,求的值

2與邊的延長線交于點的延長線交于點,連接,若,的長為,當時,求的度數(shù)(提示:可再備用圖上補全示意圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,I是△ABC的內(nèi)心,OAB邊上一點,⊙O經(jīng)過B點且與AI相切于I點.若tanBAC,則sinC的值為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運輸?shù)雀鞣N費用(不含生產(chǎn)成本)總計50萬元,其銷售量y(萬個)與銷售價格(元/個)的函數(shù)關(guān)系如圖所示.

(1)當30x60時,求y與x的函數(shù)關(guān)系式;

(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤w(萬元)與銷售價格x(元/個)的函數(shù)關(guān)系式;

(3)銷售價格應定為多少元時,獲得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店以每千克8元的價格收購蘋果若干千克,銷售了部分蘋果后,余下的蘋果以每千克降價4元銷售,全部售完。銷售金額y(元)與銷售量x(千克)之間的關(guān)系如圖所示。請根據(jù)圖象提供的信息完成下列問題:

1)降價前蘋果的銷售單價是 /千克;

2)求降價后銷售金額y(元)與銷售量x千克之間的函數(shù)解析式,并寫出自變量的取值范圍;

3)該水果店這次銷售蘋果盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了預防新冠肺炎,某藥店銷售甲、乙兩種防護口罩,已知甲口罩每袋的售價比乙口罩多5元,小明從該藥店購買了3袋甲口罩和2袋乙口罩共花費115元.

1)求該藥店甲、乙兩種口罩每袋的售價分別為多少元?

2)根據(jù)消費者需求,藥店決定用不超過8000元購進甲、乙兩種口罩共400袋.已知甲口罩每袋的進價為22.2元,乙口罩每袋的進價為17.8元,要使藥店獲利最大,應該購進甲、乙兩種口罩各多少袋,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了解初三學生的視力情況,對全體初三學生的視力進行了檢測,將所得數(shù)據(jù)整理后畫出頻率分布直方圖(如圖),已知圖中從左到右第一、二、三、五小組的頻率分別為0.05,0.1,0.25,0.1,如果第四小組的頻數(shù)是180人,那么該校初三共有_____位學生.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃投資萬元引進一條汽車配件流水生產(chǎn)線,經(jīng)過調(diào)研知道該流水生產(chǎn)線的年產(chǎn)量為件,每件總成本為萬元,每件出廠價萬元;流水生產(chǎn)線投產(chǎn)后,從第年到第年的維修、保養(yǎng)費用累計(萬元)如下表:

···

維修、保養(yǎng)費用累計萬元

···

若上表中第年的維修、保養(yǎng)費用累計(萬元)的數(shù)量關(guān)系符合我們已經(jīng)學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中某一個.

1)求出關(guān)于的函數(shù)解析式;

2)投產(chǎn)第幾年該公司可收回萬元的投資?

3)投產(chǎn)多少年后,該流水線要報廢(規(guī)定當年的盈利不大于維修、保養(yǎng)費用累計即報費)

查看答案和解析>>

同步練習冊答案