【題目】(1)填表,使上下每對x,y的值是方程3x+y=5的解
x | ﹣2 | 0.4 |
|
|
y |
|
| 0 | 3 |
(2)寫出二元一次方程3x+y=5的正整數(shù)解: .
科目:初中數(shù)學 來源: 題型:
【題目】第十五屆中國“西博會”將于2014年10月底在成都召開,現(xiàn)有20名志愿者準備參加某分會場的工作,其中男生8人,女生12人.
(1)若從這20人中隨機選取一人作為聯(lián)絡員,求選到女生的概率;
(2)若該分會場的某項工作只在甲、乙兩人中選一人,他們準備以游戲的方式?jīng)Q定由誰參加,游戲規(guī)則如下:將四張牌面數(shù)字分別為2,3,4,5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則甲參加,否則乙參加.試問這個游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在Rt△ABC中,∠C=90°,BC=1,AC=,點D是斜邊AB的中點,點E是邊AC上一點,則DE+BE的最小值為( )
A. 2
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,直線AB∥CD,E是AB與AD之間的一點,連接BE,CE,可以發(fā)現(xiàn)∠B+∠C=∠BEC.
證明過程如下:
證明:過點E作EF∥AB,
∵AB∥DC,EF∥AB(輔助線的作法),
∴EF∥DC
∴∠C=∠CEF.
∵EF∥AB,∴∠B=∠BEF
∴∠B+∠C=∠CEF+∠BEF
即∠B+∠C=∠BEC.
(2)如果點E運動到圖②所示的位置,其他條件不變,∠B,∠C,∠BEC又有什么關系?并證明你的結(jié)論;
(3)如圖③,AB∥DC,∠C=120°,∠AEC=80°,則∠A= .(寫出結(jié)論,不用寫計算過程)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)已知代數(shù)式(ax-3)(2x+4)-x2-b化簡后,不含x2項和常數(shù)項.
(1)求a,b的值;
(2)求(2a+b)2-(a-2b)(a+2b)-3a(a-b)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三個天平的托盤中形狀相同的物體質(zhì)量相等.圖①、圖②所示的兩個天平處于平衡狀態(tài),要使第三個天平也保持平衡,可在它的右盤中放置( )
A. 3個球 B. 4個球
C. 5個球 D. 6個球
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)為了進一步緩解交通擁堵問題,決定修建一條長為6千米的公路.如果平均每天的修建費y(萬元)與修建天數(shù)x(天)之間在30≤x≤120,具有一次函數(shù)的關系,如下表所示.
X | 50 | 60 | 90 | 120 |
y | 40 | 38 | 32 | 26 |
(1)求y關于x的函數(shù)解析式;
(2)后來在修建的過程中計劃發(fā)生改變,政府決定多修2千米,因此在沒有增減建設力量的情況下,修完這條路比計劃晚了15天,求原計劃每天的修建費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC 的角平分線與 BC 的垂直平分線交于點 D,DE⊥AB, DF⊥AC,垂足分別為 E,F(xiàn).若 AB=10,AC=8,求 BE 長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com